Skip to main content

Monte Carlo Optimization

  • Chapter
Monte Carlo Statistical Methods

Part of the book series: Springer Texts in Statistics ((STS))

Abstract

This chapter is the equivalent for optimization problems of what Chapter 3 is for integration problems. Here we distinguish between two separate uses of computer generated random variables. The first use, as seen in Section 5.2, is to produce stochastic techniques to reach the maximum (or minimum) of a function, devising random explorations techniques on the surface of this function that avoid being trapped in a local maximum (or minimum) but also that are sufficiently attracted by the global maximum (or minimum). The second use, described in Section 5.3, is closer to Chapter 3 in that it approximates the function to be optimized. The most popular algorithm in this perspective is the EM (Expectation-Maximization) algorithm.

“Remember, boy,” Sam Nakai would sometimes tell Chee, “when you’re tired of walking up a long hill you think about how easy it’s going to be walking down.”

—Tony Hillerman, A Thief of Time

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  • Broniatowski, M., Celeux, G., and Diebolt, J. (1984). Reconnaissance de mélanges de densités par un algorithme d’apprentissage probabiliste. In Diday, E., editor, Data Analysis and Informatics, volume 3, pages 359–373. North-Holland, Amsterdam.

    Google Scholar 

  • Celeux, G. and Clairambault, J. (1992). Estimation de chaînes de Markov cachées: méthodes et problèmes. In Approches Markoviennes en Signal et Images, pages 5–19, CNRS, Paris. GDR CNRS Traitement du Signal et Images.

    Google Scholar 

  • Celeux, G. and Diebolt, J. (1985). The SEM algorithm• a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Statist. Quater., 2: 73–82.

    Google Scholar 

  • Diebolt, J. and Ip, E. (1996). Stochastic EM: method and application. In Gilks, W., Richardson, S., and Spiegelhalter, D., editors, Markov chain Monte Carlo in Practice, pages 259–274. Chapman and Hall, New York.

    Google Scholar 

  • Celeux, G. and Diebolt, J. (1990). Une version de type recuit simulé de l’algorithme EM. Comptes Rendus Acad. Sciences Paris, 310: 119–124.

    MathSciNet  MATH  Google Scholar 

  • Celeux, G., Chauveau, D., and Diebolt, J. (1996). Stochastic versions of the EM algorithm: An experimental study in the mixture case. J. Statist. Comput. Simul., 55 (4): 287–314.

    Article  MATH  Google Scholar 

  • Lavielle, M. and Moulines, E. (1997). On a stochastic approximation version of the EM algorithm. Statist. Comput., 7: 229–236.

    Article  Google Scholar 

  • Meng, X. and Rubin, D. (1991). Using EM to obtain asymptotic variance-covariance matrices. J. American Statist. Assoc., 86: 899–909.

    Article  Google Scholar 

  • Meng, X. and Rubin, D. (1992). Maximum likelihood estimation via the ECM algorithm. A general framework. Biometrika, 80: 267–278.

    Article  MathSciNet  Google Scholar 

  • Liu, C. and Rubin, D. (1994). The ECME algorithm: a simple extension of EM and ECM with faster monotonous convergence. Biometrika, 81: 633–648.

    Article  MathSciNet  MATH  Google Scholar 

  • Meng, X. and van Dyk, D. (1997). The EM algorithm an old folk-song sung to a new tune (with discussion). J. Royal Statist. Soc. Series B, 59: 511–568.

    Article  MATH  Google Scholar 

  • Neal, R. (1999). Bayesian Learning for Neural Networks, volume 118. Springer-Verlag, New York. Lecture Notes.

    Google Scholar 

  • Ripley, B. (1994). Neural networks and related methods for classification (with discussion). J. Royal Statist. Soc. Series B, 56: 409–4560.

    MathSciNet  MATH  Google Scholar 

  • Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Le Cun, Y., Boser, D., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L. (1989). Handwritten digit recognition with a backpropagation network. In Touresky, D., editor, Advances in Neural Information Processing Systems II, pages 396–404. Morgan Kaufman, San Mateo, CA.

    Google Scholar 

  • Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Mathemat. Statist., 22: 400–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. Ann. Mathemat. Statist., 23: 462–466.

    Article  MathSciNet  MATH  Google Scholar 

  • Bouleau, N. and Lépingle, D. (1994). Numerical Methods for Stochastic Processes. John Wiley, New York.

    MATH  Google Scholar 

  • Benveniste, A., Métivier, M., and Priouret, P. (1990). Adaptive Algorithms and Stochastic Approximations. Springer-Verlag, New York, Berlin-Heidelberg.

    Google Scholar 

  • Wasan, M. (1969). Stochastic Approximation. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Kersting, G. (1987). Some results on the asymptotic behavior of the RobbinsMonro process. Bull. Int. Statis. Inst., 47: 327–335.

    MathSciNet  Google Scholar 

  • Duflo, M. (1996). Random iterative models. In Karatzas, I. and Yor, M., editors, Applications of Mathematics, volume 34. Springer-Verlag, Berlin.

    Google Scholar 

  • Hwang, C. (1980). Laplace’s method revisited: Weak convergence of probability measures. Ann. Probab., 8: 1177–1182.

    Article  MathSciNet  MATH  Google Scholar 

  • Geyer, C. (1996). Estimation and optimization of functions. In Gilks, W., Richardson, S., and Spiegelhalter, D., editors, Markov chain Monte Carlo in Practice, pages 241–258. Chapman and Hall, New York.

    Google Scholar 

  • Geyer, C. and Thompson, E. (1992). Constrained Monte Carlo maximum likelihood for dependent data (with discussion). J. Royal Statist. Soc. Series B, 54: 657–699.

    MathSciNet  Google Scholar 

  • Geyer, C. and Thompson, E. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. American Statist. Assoc., 90: 909–920.

    Article  MATH  Google Scholar 

  • Geyer, C. (1993). Estimating normalizing constants and reweighting mixtures in Markov chain Monte Carlo. Technical Report 568, School of Statistics, Univ. of Minnesota.

    Google Scholar 

  • Geyer, C. (1994). On the convergence of Monte Carlo maximum likelihood calculations. J. R. Statist. Soc. B, 56: 261–274.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robert, C.P., Casella, G. (2004). Monte Carlo Optimization. In: Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4145-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4145-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1939-7

  • Online ISBN: 978-1-4757-4145-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics