Skip to main content

Identification and in Situ Detection of Intracellular Bacteria in the Environment

  • Chapter
Bacterial Invasion into Eukaryotic Cells

Part of the book series: Subcellular Biochemistry ((SCBI,volume 33))

Abstract

Today it is generally accepted that our knowledge of bacterial diversity in the environment has been severely limited by the need to obtain pure cultures prior to characterization by testing for multiple physiological and biochemical properties. In addition, the morphology of microorganisms is in general too simple to serve as a basis for a reliable and proper classification; only in rare cases does it allow the in situ identification of individual population members by microscopy (Woese, 1987). Viable plate count or most probable-number techniques have been used for quantification of active cells in different environments but are always selective and can therefore not yield sufficient documentation of the true community structure (Table 1). For aquatic habitats as well as soils and sediments it has been frequently reported that direct microscopic counts exceed viable-cell counts by several orders of magnitude (Torsvik et al.,1990; Ferguson et al.,1984; Jones, 1977). This phenomenon is known as the “great plate count anomaly” described by Staley and Konopka (1985). Any estimation of the numbers of bacteria in the environment, whether they are pathogens, indicator organisms or genetically modified microorganisms, must allow for the fact that a proportion of the target organisms have entered the non-culturable but viable fraction of the microbial population. This accounts especially for bacterial endosymbionts colonizing free-living and parasitic protozoa although the roles such endosymbionts play in host survial, infectivity, and invasiveness are unclear (Fritsche et al., 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu Kwaik, Y., Gao, L.Y., Harb, O.S., and Stone, B.J., 1997, Transcriptional regulation of the macrophage-induced gene (gspA) of Legionella pneumophila and phenotypic characterization of a null mutant, Mol. Microbiol. 24: 629–642.

    Article  Google Scholar 

  • Achi, R., Mata, L., Siles, X., and Lindberg, A.A., 1996, Immunomagnetic separation and detection show shigellae to be common faecal agents in children from urban marginal communities of Costa Rica, J. Infect. 32: 211–218.

    Article  PubMed  CAS  Google Scholar 

  • Amann, R.I., 1995a, Fluorescently labeled, rRNA-targeted oligonucleotide probes in the study of microbial ecology, Mol. Ecot 4: 543–554.

    Article  CAS  Google Scholar 

  • Amann, R.I., 19956, In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes, in: Molecular Microbial Ecology Manual,(A.D.L. Akkerman, J.D. van Elsas, and F.J. de Bruijn, eds.), Kluwer Academic Publishers, Dordrecht, Netherlands, 3.3.6., p. 1–15.

    Google Scholar 

  • Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A., 1990a. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbial. 56: 1919–1925.

    CAS  Google Scholar 

  • Amann, R.I., Krumholz, L., and Stahl, D.A., 1990b, Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology, J. Bacterio1. 172: 762–770.

    CAS  Google Scholar 

  • Amann, R., Springer, N., Ludwig, W, GSrtz, H.-D., and Schleifer, K.-H., 1991, Identification in situ and phylogeny of uncultured bacterial endosymbionts, Nature (London) 351: 161–164.

    Article  CAS  Google Scholar 

  • Amann, R.I., Stromley, J., Devereux, R., Key, R., and Stahl, D.A., 1992a, Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofllms, Appl. Environ. Microbiol. 58: 614–623.

    PubMed  CAS  Google Scholar 

  • Amann, R., Zarda, B., Stahl, D.A., and Schleifer, K.-H., 1992b, Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes, Appt Environ. Microbiol. 58: 3007–3011.

    CAS  Google Scholar 

  • Amann, R., Ludwig, W, and Schleifer, K.-H., 1995, Phylogenetic identification and in situ detec-tion of individual microbial cells without cultivation, Microbiol. Rev. 59: 143–169.

    PubMed  CAS  Google Scholar 

  • Amann, R., Snaidr, J., Wagner, M., Ludwig, W, and Schleifer, K.-H., 1996, In situ visualization of high genetic diversity in a natural microbial community, J. Bacteria 178: 3496–3500.

    CAS  Google Scholar 

  • Amann, R., Springer, N., Schönhuber, W., Ludwig, W., Schmidt, E.N., Müller, K.-D., and Michel, R., 1997, Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp., Appl. Environ. Microbiol. 63: 115–121.

    PubMed  CAS  Google Scholar 

  • Arn_ heim, N., and Ehrlich, H.A., 1992, Polymerase chain reaction strategy, Annu. Rev. Biochem. 61: 131–169.

    Article  PubMed  CAS  Google Scholar 

  • Aßmus, B., Hutzler, P., Kirchhof, G., Amann,R., Lawrence, J.R., and Hartmann, A., 1995, In situ localization of Azospirillum brasilense in the rhizosphere of wheat using fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy, Appl. Environ. Microbiol. 61: 1013–1019.

    Google Scholar 

  • Barbaree, J.M., Fields, B.S., Feeley, J.C., Gorman, G. W, and Martin, W.T., 1986, Isolation of protozoa from water associated with a legionellosis outbreak and demonstration of intracellular multiplication of Legionella pneumophila, Appl. Environ. Microbiol. 51: 422–424.

    PubMed  CAS  Google Scholar 

  • Barker, J., and Brown, M.R.W., 1994, Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment, Microbiol. 140: 1253–1259.

    Article  CAS  Google Scholar 

  • Barker, J., Scaife, H., and Brown, M.R.W., 1995, Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila, Antimicrob. Agents Chemother. 39: 2684–2688.

    Article  PubMed  CAS  Google Scholar 

  • Bermudez, L.E., 1994, Immunobiology of Mycobacterium avium infection, Eur. J. Clin. Microbiol. Infect. Dis. 13: 1000–1006.

    Article  PubMed  CAS  Google Scholar 

  • Birtles, R.J., Rowbotham, T.J., Storey, C., Marrie, T.J., and Raoult, D., 1997, Chlamydia-like obligate parasite of free-living amoebae, Lancet 349: 925–926.

    Article  PubMed  CAS  Google Scholar 

  • Brand, B.C., and Hacker, J., 1996, The biology of Legionella infection., in: Host response to intracellular pathogens, ( S.H.E. Kaufmann, ed.), R.G. Landes Company, Austin, pp. 291–312.

    Google Scholar 

  • Briglia, M., Eggen, R.I.L., DeVos, W.M., and Van Elsas, J.D., 1996, Rapid and sensitive method for the detection of Mycobacterium chlorophenolicum PCP-1 in soil based on 16S rRNA gene-targeted PCR, Appl. Environ. Microbiol. 62: 1478–1480.

    PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention, 1993, Initial therapy for tuberculosis in the era of multidrug resistance, MMWR. 42 (RR-7): 1–8.

    Google Scholar 

  • Chantier, S., and McIllmurray, M.B., 1988, Labeled antibody methods for detection and identification of microorganisms, Methods in Microbiology 19: 273–332.

    Article  Google Scholar 

  • Cirillo, J.D., Falkow, S., and Thomkins, L.S.,1994, Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion, Infect. Immun. 62: 3254–3261.

    Google Scholar 

  • Cirillo, J.D., Falkow, S., Tompkins, L.S., and Bermudez, L.E., 1997, Interaction of Mycobacterium avium with environmental amoebae enhances virulence, Infect. Immun. 65: 3759–3767.

    PubMed  CAS  Google Scholar 

  • Crawford, J.T., and Bates, J.H., 1986, Analysis of plasmids in Mycobacterium aviumintracellulare isolates from persons with acquired immunodeficiency syndrome, Am. Resp. Dis. 134: 659–661.

    CAS  Google Scholar 

  • DeLong, E.E, Wickham, G.S., and Pace, N.R., 1989, Phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells, Science 243: 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • Devereux, R., Kane, M.D., Winfrey, J., and Stahl, D.A., 1992, Genus-and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria, System. Appl. Microbiol. 15: 601–610.

    Article  CAS  Google Scholar 

  • Eckert, K.A., and Kunkel,T.A., 1991, DNA polymerase fidelity and the polymerase chain reaction, PCR Methods Appl. 1: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Embley, T.M., Finlay, B.J., and Brown, S., 1992a, RNA sequence analysis shows that the symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen species, FEMS Microbiol. Lett. 97: 57–62.

    Article  CAS  Google Scholar 

  • Embley, T.M., Finlay, B.J., Thomas, R.H., and Dyal, P.L., 1992b, The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont, J. Gen. Microbiol. 138: 1479–1487.

    Article  PubMed  CAS  Google Scholar 

  • Essig, A., Heinemann, M., Simnacher, U., and Marre, R., 1997, Infection of Acanthamoeba castellanii by Chlamydia pneumoniae, Appl. Environ. Microbiol. 63: 1396–1399.

    PubMed  CAS  Google Scholar 

  • Falkinham, J.O., 1996, Epidemiology of infection by nontuberculous Mycobacteria, Clin. MicrobioL. Rev. 9: 177–215.

    Google Scholar 

  • Farber, J.M., and Peterkin, P.I., 1991. Listeria monocytogenes, a food-borne pathogen, Microbiol. Rev. 55: 476–511.

    CAS  Google Scholar 

  • Ferguson, R.L., Buckley, E.N., and Palumbo, A.V., 1984, Response of marine bacterioplankton to differential filtration an confinement, AppL Environ. MicrobioL 47: 49–55.

    CAS  Google Scholar 

  • Frank, J.F., Gillett, R.A.N., and Ware, G.O., 1990, Association of Listeria spp. contamination in the dairy processing plant environment with the presence of staphylococci, J. Food Prot. 53: 928–932.

    Google Scholar 

  • Fritsche, T.R., Gautom, R.K., Seyedirashti, S., Bergeron, D.L., and Lindquist, T.D. 1993, Occurence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses, J. Clin. Microbiol. 31: 1122–1126.

    PubMed  CAS  Google Scholar 

  • Gilbert, R.J., Miller, K.L., and Roberts, D., 1989, L. monocytogenes and chilled foods, Lancet 1: 383–384.

    Article  PubMed  CAS  Google Scholar 

  • Glöckner, F.O.,Amann, R., Alfreider,A., Pernthaler, J., Psenner, R.,1rebesius, K., and Schleifer, K.-H., 1996, An optimized in situ hybridization protocol for planktonic bacteria, Syst. Appl. Microbiol. 19: 403–406.

    Google Scholar 

  • Grange, J.M., 1991, Environmental mycobacteria and human disease, Lepr. Rev. 62: 353–361.

    PubMed  CAS  Google Scholar 

  • Grimm, D., Merkert, H., Ludwig, W, Schleifer, K.-H., Hacker, J., and Brand, B.C., 1998, Spe-cific detection of Legionella pneumophila: construction of a new 16S rRNA-targeted oligonuclotide probe, Appl. Environ. MicrobioL 64: 2686–2690.

    PubMed  CAS  Google Scholar 

  • Gutell, R.R., Larsen, N., and Woese, C.R., 1994, Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective, Microbiol. Rev. 58: 10–26.

    PubMed  CAS  Google Scholar 

  • Hahn, D., Amann, R.I., Ludwig, W., Akkermans, A.D.L., and Schleifer, K.-H., 1992, Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides, J. Gen. Microbiol. 138: 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Holben, W.E., Jansson, J.K., Chelm, B.K., and Tiedje, J.M., 1988, DNA probe method for the detection of specific microorgnisms in the soil community, Appt Environ. Microbiol. 54: 703–711.

    CAS  Google Scholar 

  • Horn, M., Wagner, M., Fritsche, T., and Schleifer, K.-H., 1998, Phylogenetic studies on Acanthamoeba and nonculturable bacterial endosymbionts using 18S and 16S rDNA sequence analysis. VAAM, General Meeting, Frankfurt, Germany.

    Google Scholar 

  • Horwitz, M.A., and Silverstein, S.C., 1980, Legionnaires’ disease bacterium (Legionella pneu- mophila) multiplies intracellularly in human monocytes, J. Clin. Invest. 66: 441–450.

    Article  PubMed  CAS  Google Scholar 

  • Hussong, D., Colwell, R.R., O’Brien, M., Weiss, E., Pearson, A.D., Weiner, R.M., and Burge, W.D., 1987, Viable Legionella pneumophila not detectable by culture on agar media, Bio/Technology 5: 947–950.

    Article  Google Scholar 

  • Islam, M.S., Hasan, M.K., Miah, M.A., Sur, G.C., Felsenstein, A., Venkatesan, M., Sack, R.B., and Albert, M.J., 1993, Use of the polymerase chain reaction and fluorescent-antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms, Appt Environ. MicrobioL 59: 536–540.

    CAS  Google Scholar 

  • Jepras, R.I., Fitzgeorge, R.B., and Baskerville, A., 1985, A comparison of virulence of two strains of Legionella pneumophila based on experimental aerosol infection of guinea pigs, J. Hyg. 95: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J.G., 1977, The effects of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures, Freshwater Biol. 7: 67–91.

    Article  CAS  Google Scholar 

  • Khan, M.U.; Curlin, G.T., and Huq, M.I., 1979, Epidemiology of Shigella dysenteriae type 1 infections in Dacca [sic] urban area, Trop. Geogr. Med. 31: 213–223.

    PubMed  CAS  Google Scholar 

  • King, C.H., Shotts, E.B., Wooley, R.E., and Porter, K.G., 1988, Survival of coliforms and bacterial pathogens within protozoa during chlorination, Appl. Environ. Microbiol. 54: 3023–3033.

    PubMed  CAS  Google Scholar 

  • King, W., Raposa, S., Warshaw, J., Johnson, A., Halbert, D., and Klinger, J.D., 1989, A new colorimetric nucleic acid hybridization assay for Listeria in foods, Int. J. Food Microbio!. 8: 225–232.

    Article  CAS  Google Scholar 

  • Kopczinsky, E.D., Bateson, M.M., and Ward, D.M., 1994, Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms, Appl. Environ. Microbiol. 60: 746–748.

    Google Scholar 

  • Kurtz, J.B., Bartlett, C.L.R., Newton, U.A., White, R.A., and Jones, N.L., 1982, Legionella pneumophila in cooling towers in London and a pilot trial of selected biocides, J. Hyg. 88: 369–381.

    CAS  Google Scholar 

  • Liesack, W., Weyland, H., and Stackebrandt, E., 1991, Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria, Microb. Ecol. 21: 191–198.

    Article  CAS  Google Scholar 

  • Loessner, M.J., Rudolf, M., and Scherer, S., 1997, Evaluation of luciferase reporter bacteriophage A511::luxAB for detection of Listeria monocytogenes in contaminated foods, Appl. Environ. Microbiol. 63: 2961–2965.

    PubMed  CAS  Google Scholar 

  • Ly, T.M.C., and Muller, H.E., 1990a, Interactions of Listeria monocytogenes, Listeria seeligeri and Listeria innocua with protozoans, J. Gen. Appl. Microbiol. 36: 143–150.

    Article  Google Scholar 

  • Ly, T.M.C., and Muller, H.E., 1990b. Ingested Listeria monocytogenes survive and multiply in protozoa, J. Med. Microbiol. 33: 51–54.

    Article  PubMed  CAS  Google Scholar 

  • Maidak, B.L., Olsen, G.J., Larsen, N., Overbeek,R., McCaughey, M.J., and Woese, C.R., 1997, The RDP (Ribosomal Database Project), Nucleic Acids Res. 25: 109–110.

    Article  PubMed  CAS  Google Scholar 

  • Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.-H., 1992, Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions, System. Appl. Microbiol. 15: 593–600.

    Article  Google Scholar 

  • Manz, W., Szewzyk, U., Eriksson, P., Amann, R., Schleifer, K.H., and Stenström, T.-A., 1993, In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes, Appl. Environ. Microbiol. 59: 2293–2298.

    CAS  Google Scholar 

  • Manz, W, Szewzyk, R., Szewzyk, U., Hutzler, P., Amann, R., and Schleifer, K.H., 1995, In situ identification of Legionellaceae using specific rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy, Microbio. 141: 29–39.

    CAS  Google Scholar 

  • Menard, R., Dehio, C., and Sansonetti, P, 1996, Bacterial entry into epithelial cells: the paradigm of Shigella, Trends Microbiol. 4: 220–226.

    Article  PubMed  CAS  Google Scholar 

  • Michel, R., Hauröder-Philippczyk, B., Müller, K.-D., and Weishaar, I., 1994, Acanthamoeba from human nasal mucosa infected with an obligate intracellular parasite, Eur. J. Parasitol. 30: 104–110.

    Google Scholar 

  • Neef, A., Zaglauer, A., Meier, H., Amann, R.; Lemmer, H., and Schleifer, K.H., 1996, Popula-tion analysis in a denitrifying sand filter: conventional and in situ identification of Para-coccus sp. in methanol-fed biofilms, Appl. Environ. Microbiol. 62: 4329–4339.

    PubMed  CAS  Google Scholar 

  • Olsen, G.J., Lane, D.J., Giovannoni, S.J., Pace, N.R., and Stahl, D.A., 1986, Microbial ecology and evolution: a ribosomal RNA approach, Annu. Rev. Microbiol. 40: 337–365.

    Article  PubMed  CAS  Google Scholar 

  • Ouverney, C.C., and Fuhrman, J.A., 1997, Increase in fluorescence intensity of 16S rRNA in situ hybridization in natural samples treated with chloramphenicol, Appl. Environ. Microbiol. 63: 2735–2740.

    PubMed  CAS  Google Scholar 

  • Paszko-Kolva, C., Shahamat, M., and Colwell, R.R., 1992, Longterm survival of Legionella pneumophila serogroup 1 under low-nutrient conditions and associated morphological changes, FEMS MicrobioL EcoL 102: 45–55.

    Article  Google Scholar 

  • Peel, M., Donachle, W, and Shaw, A., 1988, Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting, J. Gen. Microbiol. 143: 2171–2178.

    Google Scholar 

  • Peters, M., Muller, C., Rush-Gerdes, S., Seidel, C., Gobel, U., Pohle, H.D., and Ruf, B., 1995, Isolation of atypical mycobacteria from tap water in hospitals and homes: is this a possible source of disseminated MAC infection in AIDS patients?, J. Inf. 31: 39–40.

    Article  CAS  Google Scholar 

  • Pillay, D.G., Karas, A.J., and Sturm, A.W., 1997, An outbreak of Shiga bacillus dysentery in KwaZulu/Natal, South Africa, J. Infect. 34: 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Poulsen, L.K., Ballard, G., and Stahl, D.A., 1993, Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms, AppL Environ. Microbiol. 59: 1354–1360.

    PubMed  CAS  Google Scholar 

  • Rahman, I., Shahamat, M., Chowdhury, M.A.R., and Colwell, R.R., 1996, Potential virulence of viable but nonculturable Shigella dysenteriae type 1, Appl. Environ. MicrobioL 62: 115–120.

    PubMed  CAS  Google Scholar 

  • Ramsing, N.B., Kühl, M., and Jorgensen, B.B., 1993, Distribution of sulfate-reducing bacteria, 02 and H2S in photosynthetic biofilms determined by oligonucleotide probes and micro-electrodes, Appl. Environ. Microbiol. 59: 3820–3849.

    Google Scholar 

  • Ren, T., and Frank, J.F., 1993, Susceptibility of starved planktonic and biofitm Listeria monocytogenes to quaternary ammonium sanitizer as determined by direct viable and agar plate counts, J. Food Prot. 56: 573–576.

    CAS  Google Scholar 

  • Rogers, J., and Keevil, C.W.,1992, Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofitm visualized by using episcopic differential interference contrast microscopy, AppL Environ. Microbio!. 58: 2326–2330.

    Google Scholar 

  • Roller, C., Wagner, M., Amann, R., Ludwig, W., and Schleifer, K.-H., 1994. In situ probing of gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides, Microbio. 140: 2849–2858.

    CAS  Google Scholar 

  • Rowe, B., and Gross, R.J., 1984, Shigella, in: Bergey’s manual of systematic bacteriology, ( N.R. Krieg, G. Holt, eds.) Williams and Wilkins, Baltimore, pp. 423–427.

    Google Scholar 

  • Rudi, K., Kroken, M., Dahlberg, O.J., Deggerdal, A., Jakobsen, K.S., and Larsen, F, 1997, Rapid, universal method to isolate PCR-ready DNA using magnetic beads, BioTechniques 22: 506–511.

    PubMed  CAS  Google Scholar 

  • Ruf, B., Schürmann, D., Horbach, I., Fehrenbach, F.J., and Pohle, H.D., 1990, Prevalence and diagnosis of Legionella pneumonia: a 3-year prospective study with emphasis on application of urinary antigen detection, J. Infect. Dis. 162: 1341–1348.

    Article  PubMed  CAS  Google Scholar 

  • Salfinger, M., and Pfyffer, G.E., 1994, The new diagnostic Mycobacteriology Laboratory, Eur. J. Clin. MicrobioL Infect. Dis. 13: 961–979.

    Article  PubMed  CAS  Google Scholar 

  • Sansonetti, P., 1992, Molecular and cellular biology of Shigella flexneri invasiveness: from cell assay systems to shigellosis, Curr. Top. Microbiol. Immunol. 180: 1–19.

    Google Scholar 

  • Saylers, A.A., and Whitt, D.D., 1994, Bacterial pathogenesis, ASM, Washington, D.C., pp. 169–181.

    Google Scholar 

  • Schönhuber, W, Fuchs, B., Juretschko, S., and Amann, R., 1997, Improved sensitivity of whole cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification, Appl. Environ. Microbio!. 63: 3268–3273.

    Google Scholar 

  • Schramm, A., Larsen, L.H., Revsbech, N.P., Ramsing, N.B., Amann, R., and Schleifer, K.-H., 1996, Structure and function of a nitrifying biofitm as determined by in situ hybridization and microelectrodes, Appl. Environ. Microbio!. 62: 4641–4647.

    CAS  Google Scholar 

  • Schuchat, A., Swaminathan, B., and Broome, C.V., 1991, Epidemiology of human listeriosis, Clin. Microbiol. Rev. 4: 169–183.

    PubMed  CAS  Google Scholar 

  • Seeliger, H.P.R., and Jones, D., 1986, Listeria, in: Bergey’s Manual of Systematic Bacteriology, 2: 1235–1245.

    Google Scholar 

  • Somerville, C., Knight, I.T., Straube, W.L., and Colwell, R.R., 1989, Simple rapid method for the direct isolation of nucleic acids from aquatic environments, Appl. Environ. Microbiol. 55: 548–554.

    PubMed  CAS  Google Scholar 

  • Springer, N., Ludwig, W, Drozanski, V., Amann, R., and Schleifer, K.-H., 1992, The phylogenetic status of Sarcobium lyticum, an obligate intracellular bacterial parasite of small amoebae, FEMS Microbiol. Leu. 96: 199–202.

    Article  CAS  Google Scholar 

  • Springer, N., Ludwig, W., Amann, R., Schmidt, H.J., Görtz, H.-D., and Schleifer, K.-H., 1993, Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum, Proc. Natl. Acad. Sci. USA 90: 9892–9895.

    Article  PubMed  CAS  Google Scholar 

  • Springer, N., Amann, R., Ludwig, W, Schleifer, K.-H., and Schmidt, H., 1996, Polynucleobacter necessarius, an obligate bacterial endosymbiont of the hypotrichous ciliate Euplotes aediculatus, is a member of the 0-subclass of Proteobacteria, FEMS Microb. Lett. 135: 333–336.

    CAS  Google Scholar 

  • Stahl, D.A., and Amann, R.I., 1991, Development and application of nucleic acid probes in bacterial systematics, in: Sequencing and Hybridization Techniques in Bacterial Systematics, ( E. Stackebrandt and M. Goodfellow, eds.), John Wiley and Sons, Chichester, England, pp. 205–248.

    Google Scholar 

  • Stahl, D.A., Flesher, B., Mansfield, H.R., Montgomery, L., 1988, The use of phylogenetically based hybridization probes for studies of ruminai microbial ecology, Appl. Environ. Microbiol. 54: 1079–1084.

    CAS  Google Scholar 

  • Staley, J.T., and Konopka, A., 1985, Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats, Annu. Rev. Microbiol. 39: 32–346.

    Article  Google Scholar 

  • Steinert, M., Emödy, L., Amann, R., and Hacker, J., 1997, Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii, Appl. Environ. Microbiol. 63: 2047–2053.

    CAS  Google Scholar 

  • Steinert, M., Birkness, K., White, E., Fields, B., and Quinn, F., 1998a, Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within the cyst wall, Appl. Environ.Microbiol. 64: 2256–2261.

    CAS  Google Scholar 

  • Steinert, M., Birkness, K., White, E., Quinn, F., and Fields, B., 1998b, Survival of bacterial pathogens within Acanthamoeba polyphaga, 98th ASM General Meeting, Atlanta, Abstr. N49, p. 374.

    Google Scholar 

  • Strunk, O., Gross, O., Reichel, B., May, M., Hermann, S., Stuckman, N., Nonhoff, B., Lenke, M.,Ginhart, A., Vilbig, A., Ludwig, T., Bode, A., Schleifer, K.-H., and Ludwig, W, 1998, ARB: a software environment for sequence data, http://www.mikro.biologie. tumuenchen.de.

    Google Scholar 

  • Szewzyk, U., Manz, W, Amann, R., Schleifer, K.-H., and Stenström, T.-A., 1994, Growth and in situ detection of a pathogenic Escherichia coli in biofilms of a heterotrophic water bacterium by use of 16S- and 23S-rRNA-directed fluorescent oligonucleotide probes, FEMS Microbiol. Ecol. 13: 169–175.

    CAS  Google Scholar 

  • Torsvik V., Goksoyr, J., and Daae, F.L., 1990, High diversity of DNA of soil bacteria, Appl. Environ. Microbiol. 56: 782–787.

    PubMed  CAS  Google Scholar 

  • Van de Peer, Y., Jansen, J., De Rijk, P., and De Wachter, R., 1997, Database on the structure of small ribosomal subunit RNA, Nucleic Acids Res. 25: 111–116.

    Article  PubMed  Google Scholar 

  • Wagner, M., Amann, R., Lemmer, H., and Schleifer, K.-H., 1993, Probing activated sludge with proteobacteria-specific oligonucleotides: inadequacy of culture-dependent methods for describing microbial community structure, Appl. Environ. Microbiol. 59: 1520–1525.

    PubMed  CAS  Google Scholar 

  • Wagner, M., Schmid, M., Juretschko, S., Trebesius, K.-H., Bubert, A., Goebel, W., and Schleifer, K.-H., 1998, In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes, FEMS Microbiol. Lett. 160: 159–168.

    Google Scholar 

  • Wallner, G., Amann, R., and Beisker, W, 1993, Optimizing fluorescent in situ hybridization of suspended cells with rRNA-targeted oligonucleotide probes for the flow cytometric identification of microorganisms, Cytometry 14: 136–143.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.C.Y., and Wang, Y., 1996, The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species, Microbiology 142: 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L.G., 1994, Dormancy of Mycobacterium tuberculosis and latency of disease, Eur. J. Clin. Microbiol. Infect. Dis. 13: 908–914.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L.G., and Kubica, G.P., 1986, Mycobacteriae, in: Bergey ‘s Manual of Systematic Bacteriology, 2: 1436–1457.

    Google Scholar 

  • Wintermeyer, E., Ludwig, B., Steinert, M., Schmitt, B., Fischer,G., and Hacker, J., 1995, Influence of site-specific altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells, Infect. Immun. 63: 4576–4583.

    CAS  Google Scholar 

  • Woese, C.R., 1987, Bacterial evolution, Microbiol. Rev. 51: 221–271.

    PubMed  CAS  Google Scholar 

  • Yan, W, Malik, M.N., Peterkin, P.I., and Sharpe, A.N., 1996, Comparison of the hydrophobic grid-membrane filter DNA probe method and the Health Protection Branch standard method for the detection of Listeria monocytogenes in foods, Int. J. Food Microbiol. 30: 379–84.

    Article  PubMed  CAS  Google Scholar 

  • Zarda, B., Amann, R., Wallner,G., and Schleifer, K.-H., 1991, Identification of single bacterial cells using digoxigenin-labeled, rRNA-targeted oligonucleotides, J. Gen. Microbiol. 137: 2823–2830.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brand, B.C., Amann, R.I., Steinert, M., Grimm, D., Hacker, J. (2000). Identification and in Situ Detection of Intracellular Bacteria in the Environment. In: Oelschlaeger, T.A., Hacker, J. (eds) Bacterial Invasion into Eukaryotic Cells. Subcellular Biochemistry, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4580-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4580-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3330-0

  • Online ISBN: 978-1-4757-4580-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics