Skip to main content

Febrile Seizures and Mechanisms of Epileptogenesis: Insights from an Animal Model

  • Chapter
Recent Advances in Epilepsy Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 548))

Abstract

Temporal lobe epilepsy (TLE) is the most prevalent type of human epilepsy, yet the causes for its development, and the processes involved, are not known. Most individuals with TLE do not have a family history, suggesting that this limbic epilepsy is a consequence of acquired rather than genetic causes. Among suspected etiologies, febrile seizures have frequently been cited. This is due to the fact that retrospective analyses of adults with TLE have demonstrated a high prevalence (20->60%) of a history of prolonged febrile seizures during early childhood, suggesting an etiological role for these seizures in the development of TLE. Specifically, neuronal damage induced by febrile seizures has been suggested as a mechanism for the development of mesial temporal sclerosis, the pathological hallmark of TLE. However, the statistical correlation between febrile seizures and TLE does not necessarily indicate a causal relationship. For example, preexisting (genetic or acquired) ‘causes’ that result independently in febrile seizures and in TLE would also result in tight statistical correlation. For obvious reasons, complex febrile seizures cannot be induced in the human, and studies of their mechanisms and of their consequences on brain molecules and circuits are severely limited. Therefore, an animal model was designed to study these seizures. The model reproduces the fundamental key elements of the human condition: the age specificity, the physiological temperatures seen in fevers of children, the length of the seizures and their lack of immediate morbidity. Neuroanatomical, molecular and functional methods have been used in this model to determine the consequences of prolonged febrile seizures on the survival and integrity of neurons, and on hyperexcitability in the hippocampal-limbic network. Experimental prolonged febrile seizures did not lead to death of any of the seizure-vulnerable populations in hippocampus, and the rate of neurogenesis was also unchanged Neuronal function was altered sufficiently to promote synaptic reorganization of granule cells, and transient and long-term alterations in the expression of specific genes were observed. The contribution of these consequences of febrile seizures to the epileptogenic process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou-Khalil B, Andermann E, Andermann F et al. Temporal lobe epilepsy after prolonged febrile convulsions: excellent outcome after surgical treatment. Epilepsia 1993; 34: 878 - 883.

    Article  PubMed  CAS  Google Scholar 

  2. Alldredge BK, Lowenstein DL. Status epilepticus: new concepts. Curr Opin Neurol 1999; 12: 183 - 190.

    Article  PubMed  CAS  Google Scholar 

  3. Altman J, Bayer SA. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 1990; 301: 365 - 381.

    Article  PubMed  CAS  Google Scholar 

  4. Amaral DG, Dent JA. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 1981; 195: 51 - 86.

    Article  PubMed  CAS  Google Scholar 

  5. Annegers JF, Hauser WA, Shirts SB et al. Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med 1987; 316: 493 - 498.

    Article  PubMed  CAS  Google Scholar 

  6. Armstrong DD. The neuropathology of temporal lobe epilepsy. J Neuropath Exp Neurol 1993; 52: 433 - 443.

    Article  PubMed  CAS  Google Scholar 

  7. Avishai-Eliner S, Brunson KL, Sandman CA et al. Stressed out or in (utero)? Trends Neurosci 2002; 25: 518 - 524.

    Article  PubMed  CAS  Google Scholar 

  8. Baram TZ. Mechanisms and outcome of febrile seizures: What have we learned from basic science approaches, and what needs studying? In: Baram TZ, Shinnar S, eds. Febrile seizures. San Diego, CA: Academic Press, 2002: 325 - 328.

    Google Scholar 

  9. Baram TZ, Hirsch E, Snead III OC et al. Corticotropin-releasing hormone-induced seizures in infant rats originate in the amygdala. Ann Neurol 1992; 31: 488 - 494.

    Article  PubMed  CAS  Google Scholar 

  10. Bender RA, Brewster A, Santoro B et al. Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1-4 suggests evolving roles in the developing rat hippocampus. Neuroscience 2001; 106: 689 - 698.

    Article  PubMed  CAS  Google Scholar 

  11. Bender RA, Dubé C, Gonzalez-Vega R et al. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus 2002; 13: 399 - 412.

    Article  Google Scholar 

  12. Berg AT, Shinnar S Complex febrile seizures. Epilepsia 1996; 37: 126 - 133.

    Article  PubMed  CAS  Google Scholar 

  13. Bower SP, Kilpatrick CJ, Vogrin SJ et al. Degree of hippocampal atrophy is not related to a history of febrile seizures in patients with proved hippocampal sclerosis. J Neurol Neurosurg Psychiatry 2000; 69: 733 - 8.

    Article  PubMed  CAS  Google Scholar 

  14. Brewster A, Bender RA, Chen Y et al. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform and cell-specific manner. J Neurosci 2002; 22: 4591 - 4599.

    PubMed  CAS  Google Scholar 

  15. Briellmann RS, Kamins RM, Berkovic SF et al. Hippocampal pathology in refractory temporal lobe epilepsy. T2-weighted signal change reflects dentate gliosis. Neurology 2002; 58: 265 - 271.

    Article  PubMed  Google Scholar 

  16. Bruton CJ. The neuropathology of temporal lobe epilepsy (Maudsley Monographs, No 31 ). New York, NY: Oxford University Press, 1988.

    Google Scholar 

  17. Cendes F, Andermann F, Dubeau F et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of medial structures and temporal lobe epilepsy. An MRI volumetric study. Neurology 1993; 43: 1083 - 1087.

    Article  PubMed  CAS  Google Scholar 

  18. Cendes F, Cook MJ, Watson C et al. Frequency and characteristics of dual pathology in patients with lesional epilepsy. Neurology 1995; 45: 2058 - 2064.

    Article  PubMed  CAS  Google Scholar 

  19. Chen K, Baram TZ, Soltesz I et al. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 1999; 5: 888 - 894.

    Article  PubMed  CAS  Google Scholar 

  20. Chen K, Aradi I, Thon N et al. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med 2001; 7: 331 - 337.

    Article  PubMed  CAS  Google Scholar 

  21. Cook MJ, Fish DR, Shorvon SD et al. Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain 1992; 115: 1001 - 1015.

    Article  PubMed  Google Scholar 

  22. Cooper AJ, Egleston C. Accidental ingestion of Ecstasy by a toddler: unusual cause for convulsion in a febrile child. J Accid Emerg Med 1997; 14: 183 - 184.

    Article  PubMed  CAS  Google Scholar 

  23. Coulter DA, DeLorenzo RJ. Basic mechanisms of status epilepticus. Adv Neurol 1999; 79: 725 - 733.

    PubMed  CAS  Google Scholar 

  24. Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child 1973; 48: 757 - 767.

    Article  PubMed  CAS  Google Scholar 

  25. Engel Jr J, Williamson PD, Wieser HG. Mesial temporal lobe epilepsy. In: Engel Jr J, Pedley TA, eds. Epilepsy: A comprehensive textbook. Philadelphia, PA: Lippincott-Raven Publishers, 1997: 2417 - 2426.

    Google Scholar 

  26. DiFrancesco D. Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol 1993; 55: 455 - 472.

    Article  Google Scholar 

  27. Dubé C, Chen K, Eghbal-Ahmadi M et al. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann Neurol 2000; 47: 336 - 344.

    Article  PubMed  Google Scholar 

  28. Dubé C. Do prolonged febrile seizures in an immature rat model cause epilepsy? In: Baram TZ, Shinnar S, eds. Febrile seizures. San Diego, CA: Academic Press, 2002: 215 - 229.

    Chapter  Google Scholar 

  29. Eghbal-Ahmadi M, Yin H, Stafstrom CE et al. Altered expression of specific AMPA type glutamate receptor subunits after prolonged experimental febrile seizures in CA3 of immature rat hippocampus. Soc Neurosci Abstr 2001; 31: 684. 6.

    Google Scholar 

  30. Falconer MA, Serafetinides EA, Corsellis JAN. Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol 1964; 10: 233 - 248.

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez G, Effenberger O, Vinz B et al. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 1998; 50: 909 - 917.

    Article  PubMed  CAS  Google Scholar 

  32. Fewell JE, Wong VH. Interleukin-lbeta-induced fever does not alter the ability of 5- to 6-day-old rat pups to autoresuscitate from hypoxia-induced apnoea. Exp Physiol 2002; 87: 17 - 24.

    Article  PubMed  Google Scholar 

  33. Fish DR, Spencer SS. Clinical correlations: MRI and EEG. Magn Reson Imaging 1995; 13: 1113 - 1117.

    Article  CAS  Google Scholar 

  34. Franz O, Liss B, Neu A et al. Single-cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization-activated cyclic nucleotide-gated ion channels (Ih) in central neurons. Eur J Neurosci 2000; 12: 2685 - 2693.

    Article  PubMed  CAS  Google Scholar 

  35. French JA, Williamson PD, Thadani VM et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 1993; 34: 774 - 780.

    Article  PubMed  CAS  Google Scholar 

  36. Gallyas F, Guldner FH, Zoltay G et al. Golgi-like demonstration of “dark” neurons with an argyrophil III method for experimental neuropathology. Acta Neuropathol (Berlin) 1990; 79: 620 - 628.

    Article  CAS  Google Scholar 

  37. Gallyas F, Zoltay G, Horvath Z et al. Light microscopic response of neuronal somata, dendrites, axons to postmortem concussive head injury. Acta Neuropathol (Berlin) 1992; 83: 499 - 503.

    Article  CAS  Google Scholar 

  38. Germano IM, Zhang YF, Sperber EF et al. Neuronal migration disorders increase seizure susceptibility to febrile seizures. Epilepsia 1996; 37: 902 - 910.

    Article  PubMed  CAS  Google Scholar 

  39. Gottlieb A, Keydar I, Epstein HT. Rodent brain growth stages: an analytical review. Biol Neonate 1977; 32: 166 - 176.

    Article  PubMed  CAS  Google Scholar 

  40. Hamati-Haddad A, Abou-Khalil B Epilepsy: diagnosis and localization in patients with antecedent childhood febrile convulsions. Neurology 1998; 50: 917 - 922.

    Article  PubMed  CAS  Google Scholar 

  41. Harvey AS, Grattan-Smith JD, Desmond PM et al. Febrile seizures and hippocampal sclerosis: frequent and related findings in intractable temporal lobe epilepsy of childhood. Pediatr Neurol 1995; 12: 201 - 206.

    Article  PubMed  CAS  Google Scholar 

  42. Hauser WA. The prevalence and incidence of convulsive disorders in children. Epilepsia 1994; 35 (Suppl 2) S1 - S6.

    Article  PubMed  Google Scholar 

  43. Herschkowitz N, Kagan J, Zilles K. Neurobiological bases of behavioral development in the first year. Neuropediatrics 1997; 28: 296 - 306.

    Article  PubMed  CAS  Google Scholar 

  44. Hjeresen DL, Diaz J. Ontogeny of susceptibility to experimental febrile seizures in rats. Dev Psychobiol 1988; 21: 261 - 275.

    Article  PubMed  CAS  Google Scholar 

  45. Houser CR. Neuronal loss and synaptic reorganization in temporal lobe epilepsy. Adv Neurol 1999; 79: 743 - 761.

    PubMed  CAS  Google Scholar 

  46. Ikonomidou-Turski C, Cavalheiro EA, Turski WA et al. Convulsant action of morphine, [D-AIa2, D-Leu5] -enkephalin and naloxone in the rat amygdala: electroencephalographic, morphological and behavioral sequelae. Neuroscience 1987; 20: 671 - 686.

    Article  PubMed  CAS  Google Scholar 

  47. Ioos C, Fohlen M, Villeneuve N et al. Hot water epilepsy: A benign and unrecognized form. J Child Neurol 2000; 15: 125 - 128.

    Article  PubMed  CAS  Google Scholar 

  48. Jackson GD, McIntosh AM, Briellmann RS et al. Hippocampal sclerosis studied in identical twins. Neurology 1998; 51: 78 - 84.

    Article  PubMed  CAS  Google Scholar 

  49. Kälviäinen R, Salmonperä T, Partanen K et al. Recurrent seizures may cause hippocampal damage in temporal lobe epilepsy. Neurology 1998; 50: 1377 - 1382.

    Article  PubMed  Google Scholar 

  50. Knudsen FU. Febrile seizures-treatment and outcome. Brain Dev 1996; 18: 438 - 449.

    Article  PubMed  CAS  Google Scholar 

  51. Iagerspetz KY, Vaatainen T. Bacterial endotoxin and infection cause behavioural hypothermia in infant mice. Comp Biochem Physiol A 1987; 88: 519 - 521.

    Article  Google Scholar 

  52. Lewis DV. Febrile convulsions and mesial temporal lobe sclerosis. Curr Opin Neurol 1999; 12: 197 - 201.

    Article  PubMed  CAS  Google Scholar 

  53. Liu Z, Gatt A, Mikati M et al. Effect of temperature on kainic acid-induced seizures. Brain Res 1993; 631: 51 - 58.

    Article  PubMed  CAS  Google Scholar 

  54. Mani KS, Mani AJ, Ramesh CK et al. Hot-water epilepsy-a peculiar type of reflex epilepsy: clinical and EEG features in 108 cases. Trans Am Neurol Assoc 1974; 99: 224 - 226.

    PubMed  CAS  Google Scholar 

  55. Mathern GW, Babb TL, Vickrey BG et al. The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain 1995; 118: 105 - 118.

    Article  PubMed  Google Scholar 

  56. Mathern GW, Babb TL, Armstrong DL. Hippocampal sclerosis. In: Engel Jr J, Pedley TA, eds. Epilepsy: A comprehensive textbook. Philadelphia, PA: Lippincott-Raven Publishers, 1997: 133 - 155.

    Google Scholar 

  57. Mathern GW, Pretorius JK, Leite JP et al. Hippocampal neuropathology in children with severe epilepsy. In: Neblig A, Motte J, Moshé SL, Plouin P, eds. Childhood epilepsies and brain development. London, England. John Libbey and Co., 1999: 171 - 185.

    Google Scholar 

  58. McCabe BK, Silveira DC, Cilio MR et al. Reduced neurogenesis after neonatal seizures. J Neurosci 2001; 21: 2094 - 2103.

    PubMed  CAS  Google Scholar 

  59. Morimoto T, Nagao H, Sano N et al. Electroencephalographic study of rat hyperthermic seizures. Epilepsy 1991; 32: 289 - 293.

    Article  CAS  Google Scholar 

  60. National Insitutes of Health Febrile seizures: Consensus development conference summary Bethesda, MD: National Institutes of Health,1980:3(2).

    Google Scholar 

  61. O’Brien TJ, So EL, Meyer FB et al. Progressive hippocampal atrophy in chronic intractable temporal lobe epilepsy. Ann Neurol 1999; 45: 526 - 529.

    Article  PubMed  Google Scholar 

  62. Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 1996; 58: 299 - 327.

    Article  PubMed  CAS  Google Scholar 

  63. Parent JM, Yu TW, Leibowitz RT et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997; 17: 3727 - 3738.

    PubMed  CAS  Google Scholar 

  64. Ribak CE, Seress L, Amaral DG. The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 1985; 14: 835 - 857.

    Article  PubMed  CAS  Google Scholar 

  65. Rocca WA, Sharbrough FW, Hauser WA et al. Risk factors for complex partial seizures: a population-based case-control study. Ann Neurol 1987; 21: 22 - 31.

    Article  PubMed  CAS  Google Scholar 

  66. Sankar R, Shin D, Liu H et al. Granule cell neurogenesis after status epilepticus in the immature rat brain. Epilepsia Suppl 2001; 7: 53 - 56.

    Google Scholar 

  67. Santoro B, Tibbs GR. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann NY Acad Sci 1999; 868: 741 - 764.

    Article  PubMed  CAS  Google Scholar 

  68. Santoro B, Chen S, Lüthi A et al. Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 2000; 20: 5264 - 5275.

    PubMed  CAS  Google Scholar 

  69. Schickerova R, Mares P, Trojan S. Correlation between electrocorticographic and motor phenomena induced by pentamethylenetetrazol during ontogenesis in rats. Exp Neurol 1984; 84: 153 - 164.

    Article  PubMed  CAS  Google Scholar 

  70. Schlessinger AR, Cowan WM, Gottlieb ID. An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol 1975; 159: 149 - 176.

    Article  PubMed  CAS  Google Scholar 

  71. Seress L, Mrzljak L. Postnatal development of mossy cells in the human dentate gyrus: a light microscopic Golgi study. Hippocampus 1992; 2: 127 - 142.

    Article  PubMed  CAS  Google Scholar 

  72. Shinnar S. Prolonged febrile seizures and mesial temporal lobe sclerosis. Ann Neurol 1998; 43: 411 - 412.

    Article  PubMed  CAS  Google Scholar 

  73. Shinnar S. Human Data: What do we know about febrile seizures and what further information is needed? In: Baram TZ, Shinnar S, eds. Febrile seizures. San Diego, CA: Academic Press, 2002: 317 - 324.

    Chapter  Google Scholar 

  74. Stafstrom CE. The incidence and prevalence of febrile seizures. In: Baram TZ, Shinnar S, eds. Febrile seizures. San Diego, CA: Academic Press, 2002; 1 - 25.

    Chapter  Google Scholar 

  75. Sundgren-Andersson AK, Ostlund P, Bartfai T. Simultaneous measurement of brain and core temperature in the rat during fever, hyperthermia, hypothermia and sleep. Neuroimmunomodulation 1998; 5: 241 - 247.

    Article  PubMed  CAS  Google Scholar 

  76. Theodore WH, Bhatia S, Hatta J et al. Hippocampal atrophy, epilepsy duration and febrile seizures in patients with partial seizures. Neurology 1999; 52: 132 - 136.

    Article  PubMed  CAS  Google Scholar 

  77. Thon N, Chen K, Aradi I et al. Physiology of limbic hyperexcitability after experimental complex febrile seizures: interactions of seizure-induced alterations at multiple levels of neuronal organization. In: Baram TZ, Shinnar S, eds. Febrile seizures. San Diego, CA: Academic Press, 2002: 203 - 213.

    Chapter  Google Scholar 

  78. Toth Z, Yan XX, Haftoglou S et al. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 1998; 18: 4285 - 4294.

    PubMed  CAS  Google Scholar 

  79. VanLandingham ICE, Heinz ER, Cavazos JE et al. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 1998; 43: 413 - 426.

    Article  Google Scholar 

  80. Van Paesschen W, Duncan JS, Stevens JM et al. Longitudinal quantitative hippocampal magnetic resonance imaging study of adults with newly diagnosed partial seizures• one-year follow-up results. Epilepsia 1998; 39: 633 - 639.

    Article  PubMed  Google Scholar 

  81. Zimmerman HM. The histopathology of convulsive disorders in children. J Pediatr 1940; 13: 359 - 390.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bender, R.A., Dubé, C., Baram, T.Z. (2004). Febrile Seizures and Mechanisms of Epileptogenesis: Insights from an Animal Model. In: Binder, D.K., Scharfman, H.E. (eds) Recent Advances in Epilepsy Research. Advances in Experimental Medicine and Biology, vol 548. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6376-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6376-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3418-5

  • Online ISBN: 978-1-4757-6376-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics