Skip to main content

Lipid Saturation in the Target Cells Plasma Membrane Blocks Tumor Necrosis Factor Mediated Cell Killing

  • Chapter
Advances in Psychoneuroimmunology

Summary

Destruction of sensitive tumor cells by tumor necrosis factor (TNF) is greatly influenced by the composition and the physical state of the lipids within the plasma membrane of the target cells. Experimental conditions that reduce the fluidity of the lipid bilayer of the membrane decrease or completely abolish TNF sensitivity of the target cells. One possible explanation for this phenomenon is the restricted availability of ceramide and arachidonic acid containing phospholipids to enzymes mediating the effects of TNF or decreased activity of the enzymes towards these phospholipids in membranes of decreased fluidity. Since microviscosity and lipid composition of the plasma membrane is known to be altered by the diet and by mediators derived from the neuro-endocrine and the immune systems, the physiological significance of these findings is clear. This phenomenon might also serve as a basis for better treatments for malignant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.A. Carswell, L.J. Old, R.L. Kassel, S. Green, N. Fiore and B. Williamson, An endotoxin-induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. USA 72:3666 (1975).

    Article  PubMed  CAS  Google Scholar 

  2. B.B. Aggarwal, W.J. Kohr, P.E. Hass, B. Moffat, S.A. Spencer, W.J. Henzel, T.S. Bringman, G.E. Nedwin, D.V. Goeddel and R.N. Harkins, Human tumor necrosis factor, J. Biol. Chem. 260:2345 (1985).

    PubMed  CAS  Google Scholar 

  3. B.J. Sugarman, G.G. Aggarwal, P.E. Hass, I.S. Figari, M.A. Palladino, M.M. Shephard, Recombinant human TNF alpha: effects on proliferation of normal and transformed cells in vitro. Science 230:943 (1985).

    Article  CAS  Google Scholar 

  4. C. Peetre, U. Gullbert, E. Nilson and J. Olson, Effects of recombinant TNF on proliferation and differentiation of leukemic and normal hemopoietic cells in vitro., J. Clin. Invest. 78:1694 (1986).

    Article  CAS  Google Scholar 

  5. B. Williamson, E.A. Carswell, B.Y. Rubin, J.S. Prendergast and L.J. Old, Human TNF produced by human B cell lines: Synergistic cytotoxic interaction with human interferon gamma, Proc. Natl. Acad. Sci. USA 80:5397 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. C.S. Johnson, M. Chang and P. Furmanski, In vivo hematopoietic effects of TNF alpha in normal and erythroleukemic mice: characterization and therapeutic applications, Blood 72:1875 (1988).

    PubMed  CAS  Google Scholar 

  7. F.C. Kuli, S. Jacobs and P. Cuatrecasas, Cellular receptor for 125I labeled TNF: Specific binding, affinity labeling and relationship to sensitivity, Proc. Natl. Acad. Sci. USA 82:5756 (1985).

    Article  Google Scholar 

  8. B.Y. Rubin, S.L. Anderson, S.A. Sulliman, B. Williamson, E.A. Carswell and L.J. Old, High affinity binding of 125I human TNF (LuKII) to specific cell surface receptors, J. Exp. Med. 162:1099 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. M. Tsujimoto, Y.K. Yip and J. Vilcek, TNF: Specific binding and internalization in sensitive and resistant cells, Proc. Natl. Acad. Sci. USA 82:7626 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. H. Loetscher, E.J. Schlaeger, H.W. Lahm, Y.C.E. Pan, W. Lesslauer and M. Brockhaus, Purification and partial amino acid sequence analysis of two distinct TNF receptors from HL60 cells, J. Biol. Chem. 265:20131 (1990).

    PubMed  CAS  Google Scholar 

  11. L.M. Obeid, D.M. Linardic, L.A. Karolak and YA. Hannun, Programmed cell death induced by ceramid, Science 259:1769 (1983).

    Article  Google Scholar 

  12. F. Jófo, N. Balogh, L.I. Horv́ath, G. Filep, I. Horv́ath and L. Vigh, L., Complex hydrogenation/oxidation reactions of the water-soluble hydrogenation catalyst palladium di(sodium alizarinmonosufonate) and details of homogenous hydrogenation of lipids in isolated biomem-branes and living cells, Anal. Biochem. 194:34 (1991).

    Article  Google Scholar 

  13. K. Chen, P.D. Morse, II and H.M. Swarts, Kinetics of enzyme-mediated reduction of lipid soluble nitroxide spin labels by living cells, Biochem. Biophys. Acta 943:477 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. O.H. Griffith and P.C. Jost, Lipid spin labels in biological membranes, in: “Spin Labeling: Theory and Applications,” L.J. Berliner, ed., Acad. Press, New York (1976).

    Google Scholar 

  15. K. Frei, C. Siepl, P. Groscurth, S. Bodmer, C. Schwerdel and A. Fontana, Interleukin-HP-1 related hybridoma and plasmacytoma growth factors induced by lipopolysaccharide in vivo, Eur. J. Immunol. 17:1217 (1987).

    Article  Google Scholar 

  16. M. Schlame, L. Horvath and L. Vigh, Relation between lipid saturation and lipid-protein interaction in liver mitochondria modified by catalytic hydrogenation with reference to cardiolipin molecular species, Biochem. J. 265:79 (1990).

    PubMed  CAS  Google Scholar 

  17. S. Benkb, H.J. Hilkmann, L. Vigh and W.J. van Blitterswijk, Catalytic hydrogenation of fatty acid chains in plasma membranes: effect of membrane lipid fluidity and expression of cell surface antigens, Biochem. Biophys. Acta 896:129 (1987).

    Article  Google Scholar 

  18. L. Vigh, I. Horvath and G.A. Thompson, Jr., Recovery of Dunaliella salina cells following hydrogenation of lipids in specific membranes by a homogenous palladium catalyst, Biochem. Biophys. Acta 937:42 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. R. Kannagi and K. Koisumi, Effect of different physical states of phospholipid substrates on partially purified platelet phospholipase A2 activity, Biochem. Biophys. Acta 556:423 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. Horv́ath, L. Vigh, T. Ṕali and GA. Thompson, Jr., Effect of catalytic hydrogenation of Tetrahymena ciliary phospholipid fatty acids on ciliary phospholipase A activity, Biochem. Biophys. Acta 1002:409 (1989).

    Article  PubMed  Google Scholar 

  21. M. Schlame, I. Horv́ath, Zs. ṪoͲ̈ok, L.I. Horv́ath and L. Vigh, Intramembraneous hydrogenation of mitochondrial lipids reduces the substrate availability but not the enzyme activity of endogenous phospholipase A. The role of polyunsaturated phospholipid species, Biochem. Biophys. Acta 1045:1 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. P. Suffys, R. Beyaert, F. Van Roy and W. Fiers, Reduced TNF-induced cytotoxicity by inhibitors of arachidonic acid metabolism, Biochem. Biophys, Res. Comm. 149:735 (1987).

    Article  CAS  Google Scholar 

  23. M-Y. Kim, C. Linardic, L. Obeid and Y. Hannun, Identification of sphingomyelin turnover as an effector mechanism for the action of TNF alpha and gamma IFN, J. Biol. Chem. 266:484 (1991).

    PubMed  CAS  Google Scholar 

  24. K.A. Dressler, S. Mathias and R.N. Kolesnick, TNF alpha activates the sphingomyelin signal transduction pathway in a cell free system, Science 255:1715 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duda, E. et al. (1994). Lipid Saturation in the Target Cells Plasma Membrane Blocks Tumor Necrosis Factor Mediated Cell Killing. In: Berczi, I., Szélenyi, J. (eds) Advances in Psychoneuroimmunology. Hans Selye Symposia on Neuroendocrinology and Stress, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9104-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9104-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9106-8

  • Online ISBN: 978-1-4757-9104-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics