Skip to main content

Bacterial Resistance to Carbapenems

  • Chapter
Antimicrobial Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 390))

Abstract

Carbapenems differ from conventional penicillins (penams) in having no sulfur atom in their 5-membered ring and in having a double bond between carbons 2 and 3 (figure 1). Imipenem, the first commercially-available carbapenem, (Merck Sharp and Dohme) has been used for nearly 10 years and is now being joined by a second agent, meropenem (Zeneca/Sumitomo). The development of a third carbapenem, biapenem (Lederle) has recently been discontinued. In contrast to all useful penicillins and cephalosporins, and to various experimental carbapenems, these three agents carry the substituents to the β-lactam ring in the trans configuration. This factor is critical to β-lactamase stability in carbapenems.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. G. Christensen, Structure-activity relationships in 13-lactam antibiotics, in “ß-Lactam Antibiotics, Mode of Action, New Developments and Future Prospects”, M. Shockman and G.D. Salton, eds., Academic Press, New York (1981).

    Google Scholar 

  2. R.C. Moellering, G. M. Eliopoulos and D.E. Sentochnik, The carbapenems: new broad spectrum f3-lactam antibiotics, J. Antimicrob Chemother. 24 Suppl A: 1 (1989).

    Google Scholar 

  3. J.R. Edwards, P.J. Turner, C. Wannop, E.S. Withnell, A.J. Grindley and K. Nairn. In vitro antibacterial activity of SM-7338, a carbapenem antibiotic with stability to renal dehydropeptidase I, Antimicrob Agents Chemother. 33:215 (1989).

    Google Scholar 

  4. P.J. Petersen, N. V. Jacobus, W.J. Weiss and R.T. Testa, In vitro and in vivo activities of LJC 10,627, a new carbapenem with stability to dehydropeptidase I, Antimicrob Agents Chemother. 35:203 (1991).

    Google Scholar 

  5. J.B. Patel and R.E. Giles, Meropenem: lack of protoconvulsive tendency in mice, J. Antimicrob Chemother. 24 Suppl A: 307 (1989).

    Google Scholar 

  6. K. Bush, Characterization of (3-lactamases, Antimicrob Agents Chemother. 33: 259 (in three parts) (1989)

    Google Scholar 

  7. D.M. Livermore, Mechanisms of resistance to ß-lactam antibiotics, Scand J Infect Dis. Suppl 78: 7 (1991).

    CAS  Google Scholar 

  8. C.C. Sanders and W.E. Sanders, f3-Lactam resistance in gram-negative bacteria: global trends and clinical impact, Clin Infect Dis. 15: 824. (1992).

    Article  CAS  PubMed  Google Scholar 

  9. D.R. Snydman, Clinical implications of multi-resistance in the intensive care unit, Scand J Infect Dis. Suppl 78: 54 (1991).

    CAS  Google Scholar 

  10. P.M. Shah, R Asanger and F.M. Kahan, Incidence of multi-resistance in gram-negative aerobes from intensive care units of ten German hospitals. Scand J Infect Dis. Suppl 78: 22 (1991).

    CAS  Google Scholar 

  11. L. Verbist, Incidence of multiresistance in Gram-negative bacterial isolates from intensive care units in Belgium: a surveillance study, Scand J Infect Dis. Suppl 78: 45 (1991).

    CAS  Google Scholar 

  12. R.J.A. Buirma, A.M. Horrevorts, J.H.T. Wagenvoort and Participants in the 1990 Dutch Surveillance Study, Incidence of multi-resistant Gram-negative isolates in eight Dutch Hospitals, Scand J Infect Dis. Suppl 78: 35 (1991).

    Google Scholar 

  13. R.L. Charnas and J.R Knowles, Inhibition of RTEM (3-lactamase from Escherichia coli: interactions of enzyme with derivatives of olivanic acid, Biochemistry. 20: 2732 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. K. Ubukata, N. Yamashita, M. Konno, Occurrence of a 13-lactam inducible penicillin-binding protein in methicillin-resistant staphylococci, Antimicrob Agents Chemother. 27: 851 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. G. Satta, M. Lleo, E. Tonin, G.M. Rossolini and R. Fontana, Substitution of the antibiotic target: a mechanism of intrinsic resistance to beta-lactam antibiotics in gram-positive bacteria, Current Topics in Infectious Diseases and Clinical Microbiology. 3: 31 (1990).

    Google Scholar 

  16. F.M. Kayser, G. Morenzoni, A. Strassle and K. Hadorn, Activity of meropenem against gram-positive cocci, J Antimicrob Chemother. 24 Suppl. A: 101 (1989).

    Google Scholar 

  17. R. Schwalbe, M. Coyle, P. Gilligan, P. Hanff, G. Hollick and M. Pfaller, Prevalence and clinical significance of imipenem-double zone Staphylococcus haemolyticus, in “Program and Abstracts of the Thirtieth Interscience Conference on Antimicrobial Agents and Chemotherapy, 1990 Atlanta, Ga.” Abstract 475, p. 165, American Society for Microbiology, Washington, DC (1990).

    Google Scholar 

  18. R. Fontana, Penicillin-binding proteins and the intrinsic resistance to beta-lactams in gram-positive cocci, Antimicrob Agents Chemother. 16: 412 (1985).

    Article  CAS  Google Scholar 

  19. K. Klugman, Pneumococcal resistance to antibiotics, Clin Microbiol Rev. 3: 171, (1990).

    CAS  PubMed  Google Scholar 

  20. C.G. Dawson, A. Hutchison, J.A. Brannigan, R.C. George, D. Hansman, J. Linares, A. Tomasz, J.M. Smith and B.G. Spratt, Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae, Proc Nat Acad Sci (USA). 86: 8842 (1989).

    Article  Google Scholar 

  21. A. Bauernfiend, R. Jungwirth and S. Schweighart, In-vitro activity of meropenem, imipenem and penem HRE 664 and ceftazidime against clinical isolates from West Germany, J Antimicrob Chemother. 24 Suppl. A: 73 (1989).

    Google Scholar 

  22. S.K. Spangler, P.C. Appelbaum, T. Kitch and M.R. Jacobs, Activity of FK 037, cefpirome, cefepime, ceftriaxone, cefotaxime, ceftazidime, imipenem, biapenem and vancomycin against 90 penicillin-susceptible and -resistant pneumococci, in “Program and Abstracts of the Thirty-third Interscience Conference on Antimicrobial Agents and Chemotherapy, 1993 New Orleans, La.” Abstract 872, p. 279, American Society for Microbiology, Washington, DC (1993).

    Google Scholar 

  23. M. Powell, P. Seetulsingh and J.D. Williams, In-vitro susceptibility of Haemophilus influenzae to meropenem compared with imipenem, five other (3-lactams, chloramphenicol and ciprofloxacin, J Antimicrob Chemother. 24 Suppl. A: 175 (1989).

    Google Scholar 

  24. M. Powell and D.M. Livermore, Selection and transformation of non-(3-lactamasemediated insusceptibility to ß-lactams in Haemophilus influenzae: lack of cross-resistance between carbapenems and other agents, J Antimicrob Chemother. 26: 741 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. P.A. James, F.K. Hossian, D.A.Lewis and D.G. White, f3-Lactam susceptibility of Haemophilus influenzae strains showing reduced susceptibility to cefuroxime, J Antimicrob Chemother. 32: 239 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. S-F. Yeo and D.M.Livermore, Comparative in-vitro activity of biapenem and other carbapenems against Haemophilus influenzae isolates with known resistance mechanisms to ampicillin, J Antimicrob Chemother. 33: 861 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Yang and D.M Livermore, Interactions of meropenem with Class I chromosomal 3-lactamases. J Antimicrob Chemother. 24 Suppl. A: 207. (1989).

    Google Scholar 

  28. J. Monks, and S.G. Waley, Imipenem as a substrate and inhibitor of ß-lactamases, Biochem J. 253: 323 (1988).

    CAS  PubMed  Google Scholar 

  29. J.P. Quinn, E.J. Dudek, C.A. DiVencenzo, D.A. Lucks and S.A Lerner, Emergence of resistance to imipenem during therapy of Pseudornonas aeruginosa infections, J Infect Dis. 154: 289 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. J. Trias and H. Nikaido, H, Outer membrane protein D2 catalyses the facilitated diffusion of penems and carbapenems through the outer membrane of Pseudomonas aeruginosa, Antimicrob Agents Chemother. 34: 52 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. D.M. Livermore, Interplay of impermeability and chromosomal (3-lactamase in imipenem resistant Pseudomonas aeruginosa, Antimicrob Agents Chemother. 36: 2046 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. X.Y. Zhou, M-D. Kitzis and 1. Gutmann, Role of cephalosporinase in carbapenem resistance of clinical isolates of Pseudomonas aeruginosa, Antimicrob Agents Chemother. 34: 1387 (1993).

    Article  Google Scholar 

  33. H.Y. Chen. and D. M. Livermore, D.M, In-vitro activity of biapenem, compared to imipenem and meropenem, against Pseudornonas aeruginosa strains and mutants with known resistance mechanisms,,J Antimicrob Chemother. 35: 949 (1994).

    Google Scholar 

  34. D.M. Livermore and Y-J Yang, (3-Lactamase lability and inducer power of newer 3-lactams in relation to their activity against ß-lactamase inducibility mutants of Pseudomonas aeruginosa, J Infect Dis. 155: 775 (1987).

    Google Scholar 

  35. D.M. Livermore. and Y. Yang, Comparative activity of meropenem against Pseudomonas aeruginosa strains with will-characterized resistance mechanisms, J Antimicrob Chemother. 24 Suppl. A: 149 (1989).

    Google Scholar 

  36. N. Masuda. and S. Ohya, Cross-resistance to meropenem, cephems and quinolones in Pseudomonas aeruginosa, Antimicrob Agents Chemother. 36: 1847 (1992).

    Google Scholar 

  37. X-Z, Li, D. Ma, D.M. Livermore, and H. Nikaido. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Active efflux as a contributing factor to f3-lactam resistance. Antimicrob Agents Chemother. 38: 1742 (1994).

    Google Scholar 

  38. E.H. Lee, M. H. Jarlier, M. D. Kitzis, G. Pialoux, E. Collatz and L. Gutmann, Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high level resistance to imipenem. Antimicrob Agents Chemother. 35: 1093 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. A. Raimondi, A. Traverso and H. Nikaido, Imipenem-and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins, Antimicrob Agents Chemother. 35: 1174 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. S. Mehtar, A. Tsakris and T.L. Pitt, Imipenem resistance in Proteus mirabilis, J Antimicrob. Chemother. 26: 612 (1991).

    Article  Google Scholar 

  41. L.V.J. Piddock and H.L. Turner, Activity of meropenem against imipenem-resistant bacteria and in vitro selection of carbapenem-resistant Enterobacteriaceae, Eur J Clin Microbiol Infect Dis. 11: 1186 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Y. Saino, F. Kobayashi, M. Inoue and S. Mitsuhashi, Purification and properties of the inducible penicillin (3-lactamase isolated from Pseudomonas maltophilia, Antimicrob Agents Chemother. 22: 564 (1985).

    Article  Google Scholar 

  43. J.P. Iaconis and C. C. Sanders, Purification and characterization of inducible ß-lactamases in Aeromonas spp. Antimicrob Agents Chemother. 34: 44 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. E.P. Abraham and S.G. Waley, 13-Lactamases from Bacillus cereus, in “Beta-Lactamases” J.M.T. Hamilton-Miller and J.T. Smith eds., Academic Press, New York (1979).

    Google Scholar 

  45. K. Sato, R. Fujii, R. Okatomo, M. Inoue and S. Mitsuhashi, Biochemical properties of (3-lactamase produced by Flavobacterium odoratum, Antimicrob. Agents Chemother. 27: 612 (1985).

    Article  CAS  Google Scholar 

  46. T. Fujii, K. Sato, K. Miyata, M. Inoue and S. Mitsuhashi, Biochemical properties of ß-lactamase produced by Legionella gormanii, Antimicrob Agents Chemother. 29: 925 (1985).

    Article  Google Scholar 

  47. D. Payne, R. Cramp, J. Bateson, G.Clarke and D.J.C. Knowles, Detection of metallo-and serine 13-lactamases from Xanthomonas maltophilia, in “Program and Abstracts of the Thirty-third Interscience Conference on Antimicrobial Agents and Chemotherapy, 1993 New Orleans, La” Abstract 1522, p. 397, American Society for Microbiology, Washington, DC (1993).

    Google Scholar 

  48. A. von Graevenitz and C. Bucher, The effect of N-formimidoyl thienamycin, ceftazidime, cefotiam, ceftriaxone and cefotaxime on non-fermentative gram-negative rods, Aeromonas, Plesiomonas, and Enterobacter agglomerans, Infection. 10: 293 (1982).

    Article  Google Scholar 

  49. M. Akova, G. Bonfiglio and D. M. Livermore, Susceptibility to 13-lactam antibiotics of mutant strains of Xanthomonas maltophilia with high-and low-level constitutive expression of L1 and L2 13-lactamases, J Med Microbiol. 35: 208 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. K. Shannon, A. King and I. Phillips, ß-Lactamases with high activity against imipenem and SCH34343 from Aeromonas hydrophila, J Antimicrob Chemother. 12: 507 (1986).

    Google Scholar 

  51. D.M. Livermore, Carbapenemases, J Antimicrob Chemother. 29: 609 (1992).

    Article  CAS  Google Scholar 

  52. D.J. Payne, Metallo-13-lactamases - a new therapeutic challenge, J Med Microbiol. 39: 93 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. A. Yotsuji, S. Minami, M. Inoue and S. Mitsuhashi, Properties of novel ß-lactamase produced by Bacteroides fragilis, Antimicrob. Agents Chemother. 24: 925 (1983).

    Article  CAS  Google Scholar 

  54. I. Podglajen, J. Breuil, A. Coutrot, L. Gutmann and E. Collatz, Incidence of the carbapenem (Cpm) resistance gene cfiA and variability in its genomic environment in Cpm-resistant and susceptible clinical isolates of Bacteroides fragilis, in “Program and Abstracts of the Thirty-second Interscience Conference on Antimicrobial Agents and Chemotherapy, 1992 Anaheim Ca.” Abstract 583, p. 208, American Society for Microbiology, Washington, DC (1992).

    Google Scholar 

  55. I. Podglajen, J. Breuil, A. and E. Collatz, Insertion of a novel DNA sequence IS1186, immediately upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis, in “Program and Abstracts of the Thirty-third Interscience Conference on Antimicrobial Agents and Chemotherapy, 1993 New Orleans, La” Abstract 587, p. 226, American Society for Microbiology, Washington, DC (1993).

    Google Scholar 

  56. K. Bandoh, K. Watanabe, Y. Muto, Y. Tanaka, N. Kato and K. Uneo, Conjugal transfer of imipenem resistance in Bacteroides fragilis, J Antibiotics (Tokyo). 45: 542 (1992).

    Article  CAS  Google Scholar 

  57. E. Osano, Y. Arakawa, R. Wacharotayankum, M. Ohta, T. Horii, H. Ito, F. Yoshimura, and N. Kato. Molecular characterization of an enterobacterial metallo-ß-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 38: 71 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Y. Arakawa, H. Ito, S. Ohuska, N. Kato, and M. Ohta. Genetic analyses of an enterobacterial metallo-ß-lactamase carried by a large plasmid of Serratia marcescens. In “Program and Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1994 Orlando, FL.” Abstract C64, p. 89, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  59. M. Watanabe, S. Iyobe, M. Inoue and S. Mitsuhashi, Transferable imipenem resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 35: 147 (1991).

    Article  CAS  Google Scholar 

  60. B.A. Rasmussen, Y. Gluzman and F. P. Tally. Cloning and sequencing of the Class B ß-lactamase gene from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother. 34: 1590 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. O. Massidda, G.M. Rossolini and G. Satta, The Aeromonas hydrophila cphA gene; molecular heterogeneity amongst Class B metallo-ß-lactamases, J Bacteriol. 173: 4611 (1991).

    CAS  PubMed  Google Scholar 

  62. R. Bicknell, E. L. Emanuel, J. Gagnon and S.G. Waley, The production and molecular properties of the zinc ß-lactamase of Pseudomonas mallophilia IID 1275, Biochem J. 229: 791 (1985).

    CAS  PubMed  Google Scholar 

  63. P. Nordmann, S. Mariotte, T. Naas, R. Labia and M-H Nicholas, Biochemical properties of a carbapenem-hydrolyzing ß-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli, Antimicrob Agents Chemother. 37: 939 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. P. Nordmann and T. Naas, DNA and protein sequence analysis of a carbapenemase and its regulator from Enterobacter cloacae, in “Program and Abstracts of the Thirty-third Interscience Conference on Antimicrobial Agents and Chemotherapy, 1993 New Orleans, Fl.” Abstract 586, p. 226, American Society for Microbiology, Washington, DC (1993).

    Google Scholar 

  65. A.A. Medeiros and R.S. Hare, Beta-lactamase mediated resistance to penems and carbapenems amongst Enterobacteriaceae, in “Program and Abstracts of the Twenty-Sixth Interscience Conference on Antimicrobial Agents and Chemotherapy, 1986, New Orleans, La.” Abstract 116, p. 117. American Society for Microbiology, Washington, DC. (1986).

    Google Scholar 

  66. B.A. Rasmussen, D. Keeney, Y. Yang, C. O’Gara, K. Bush, and A.A. Medeires. Cloning, sequencing and biochemical characterization of a novel carbapenemhydrolyzing ß-lactamase from Enterobacter cloacae. In “Program and Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy. 1994, Orlando, Fl.” Abstract C62, p. 89. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  67. Y. Yang, P. Wu and D. M. Livermore, Biochemical characterization of a 3-lactamase that hydrolyses penems and carbapenems from two Serratia marcescens isolates, Antimicrob Agents Chemother. 34: 755 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. T.L. Naas, L. Vandel, W. Songakoff, D.M. Livermore, and P. Nordmann. Cloning and sequence analysis of the carbapenem-hydrolyzing class A 3-lactamase, Sme-1, from Sen - atia marcescens S6. Antimicrob Agents Chemother. 38: 1262 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. S. Hurlbut, G.J. Cuchural and F.P. Tally, Imipenem resistance in Bucteroides distasonis mediated by a novel ß-lactamase, Antimicrob Agents Chemother. 34: 117 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. K. Hirai, S. Iyobe, M. Inoue and S, Mitsuhashi, Purification and properties of a new ß-lactamase from Pseudomonas cepacia, Antimicrob Agents Chemother. 17:355 (1980) and Erratum Note 18: 362 (1981).

    Google Scholar 

  71. I.N. Simpson, R. Hunter, J.R.W. Govan and J.W. Nelson, Do all Pseudomonas cepacia produce carbapenemase? J Antimicrob Chemother, 32: 339 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. R. Paton, R.S. Miles, J. Hood and S.G.B. Amyes, ARI-1: ß-lactamase-mediated imipenem resistance in Acinetobacter baumanii, Int J Antimicrob Agents. 2: 81 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. B.E. Murray, Life and times of the Enterococcus, Clin Microbiol Rev. 3: 46 (1990).

    CAS  PubMed  Google Scholar 

  74. J.P. Quinn, A.E. Studemeister, C.A. DiVencenzo and SA Lerner, Resistance to imipenem in Pseudomonas aeruginosa: clinical experience and biochemical mechanisms, Rev Infect Dis. 10: 892 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. N. Khardori, L. Elting, E. Wong, B. Schable and G.P. Bodey, Nosocomial infectious due to Xanthomonas maltophilia (Pseudomonas maltophilia) in patients with cancer, Rev Infect Dis. 12: 997 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. H.Y. Chen, G. Bonfiglio, M. Allen, D. Piper, T. Edwardson, D. McVey and D.M. Livermore, Multi-centre survey of the comparative in-vitro activity of piperacillin/tazobactam against isolates from hospitalized patients, J Antimicrob Chemother. 32: 247 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. B.A. Rasmussen, K. Bush and F.P. Tally, Antimicrobial resistance in Bacteroides, Clin Infect Dis. 16: S390 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. K. Bandoh, K. Uneo and K. Watanabe, Susceptibility patterns and resistance to imipenem in the Bacteroides fragilis group species in Japan: a 4-year study, Clin Infect Dis. 16: S382 (1993).

    Article  PubMed  Google Scholar 

  79. R. Wise, In vitro and pharmacokinetic properties of the carbapenems, Antimicrob Agents Chemother 30:343 (1986).

    Google Scholar 

  80. H.F. Chambers and C.J. Hackbarth, A ß-lactam antibiotic (BLA) with high affinity for PBP2a has potent activity in a rabbit model of aortic valve endocarditis (AVE). in “ Program Supplement 33rd ICAAC, American Society for Microbiology, Washington, DC (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Livermore, D.M. (1995). Bacterial Resistance to Carbapenems. In: Jungkind, D.L., Mortensen, J.E., Fraimow, H.S., Calandra, G.B. (eds) Antimicrobial Resistance. Advances in Experimental Medicine and Biology, vol 390. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9203-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9203-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9205-8

  • Online ISBN: 978-1-4757-9203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics