Skip to main content

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 2))

  • 111 Accesses

Abstract

Resting platelets are small discoid cells that are capable, upon appropriate stimulus, of undergoing remarkable changes in morphology and activity. In vitro, these include an initial shape change to a spherical form, with the extension of pseudopodia in response to low concentrations of activating agents, incubation in the cold, or mechanical activation. This shape change may be reversed by incubation at 37°C, indicating that no major irreversible reorganization has taken place within the cell. Further activation leads to the extension of numerous long pseudopodia, followed by aggregation and the secretion of the physiologically active contents of the granules. Finally, aggregated platelets express contractile activity in causing the retraction of an aggregate or fibrin clot. An alternative method of studying in vitro activation is to allow platelets to attach to surfaces such as glass, where again initially they extend pseudopodia and finally spread to a flattened form resembling a fried egg. There are a wide variety of stimuli that can cause these reactions; these include collagen, thrombin, ADP, serotonin, and the Ca2+ ionophore A23187; their effects have been reviewed extensively by Siess (1989). The physiological counterparts of these in vitro activities are an initial activation by subendothelial collagen, exposed by damage to the endothelium, followed by further activation induced by the formation of thrombin and augmented by positive feedback from the release of ADP and serotonin from platelet degranulation. In physical terms, the platelets attach to the exposed subendothelium, form a hemostatic plug, and finally cause clot retraction to close the lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aakhus, A.-M., Wilkinson, M., Pedersen, T. M., and Solum, N. O., 1989, The use of PhastSystem crossed immunoelectrophoresis with immunoblotting to demonstrate a complex between GP Ib and the actin-binding protein (ABP) of human platelets, Electrophoresis 10: 758–761.

    PubMed  CAS  Google Scholar 

  • Adelstein, R. S., Pollard, T. D., and Kuehl, W. M., 1971, Isolation and characterisation of myosin and two myosin fragments from human blood platelets, Proc. Natl. Acad. Sci. USA 68: 2703–2707.

    PubMed  CAS  Google Scholar 

  • Alexandrova, A. Y., and Vasiliev, J. M., 1984, Focal contacts of spreading platelets with the substratum, Exp. Cell Res. 153: 254–258.

    CAS  Google Scholar 

  • Argraves, W. S., Dickerson, K., Burgess, W. H. and Ruoslahti, E., 1989, Fibulin, a novel protein that interacts with the fibronectin receptor 13 subunit cytoplasmic domain, Cell 58: 623–629.

    PubMed  CAS  Google Scholar 

  • Arimura, C., Suzuki, T., Yanagisawa, M., Imamura, M., Hamada, Y. and Masaki, T., 1988, Primary structure of chicken skeletal muscle and fibroblast a-actinins deduced from cDNA sequences, Eur. J. Biochem. 177: 649–655.

    PubMed  CAS  Google Scholar 

  • Asijee, G. M., Sturk, A., Bruin, T., Wilkinson, J. M. and Ten Cate, J. W., 1990, Vinculin is a permanent component of the membrane skeleton and is incorporated into the (re)organising cytoskeleton upon platelet activation, Eur. J. Biochem. 189: 131–136.

    PubMed  CAS  Google Scholar 

  • Asyee, G. M., Sturk, A., and Muszbek, L., 1987, Association of vinculin to the platelet cytoskeleton during thrombin-induced aggregation, Exp. Cell Res. 168: 358–364.

    PubMed  CAS  Google Scholar 

  • Ball, E. H., and Kovala, T., 1988, Mapping of caldesmon: Relationship between the high and low molecular weight forms, Biochemistry 27: 6093–6098.

    PubMed  CAS  Google Scholar 

  • Baron, M. D., Davison, M. D., Jones, P. and Critchley, D. R., 1987, The sequence of chick a-actinin reveals homologies to spectrin and calmodulin, J. Biol. Chem. 262: 17623–17629.

    PubMed  CAS  Google Scholar 

  • Beckerle, M. C., O’Halloran, T., and Burridge, K., 1986, Demonstration of a relationship between talin and P235, a major substrate of the calcium-dependent protease in platelets, J. Cell Biochem. 30: 259–270.

    PubMed  CAS  Google Scholar 

  • Beckerle, M. C., Miller, D. E., Bertagnolli, M. E. and Locke, S. J., 1989, Activation-dependent redistribution of the adhesion plaque protein, talin, in intact human platelets, J. Cell Biol. 109: 3333–3346.

    PubMed  CAS  Google Scholar 

  • Behnke, O., 1970, Microtubules in disc shaped blood cells, Int. Rev. Exp. Pathol. 9: 1–92.

    PubMed  CAS  Google Scholar 

  • Behnke, O., and Bray, D., 1988, Surface movements during the spreading of blood platelets, Eur. J. Cell Biol. 46: 207–216.

    PubMed  CAS  Google Scholar 

  • Belkin, A. M., and Koteliansky, V. E., 1987, Interaction of iodinated vinculin, metavinculin and a-actinin with cytoskeletal proteins, FEBS Lett. 220: 291–294.

    PubMed  CAS  Google Scholar 

  • Belkin, A. M., Ornatsky, O. I., Kabakov, A. E., Glukhova, M. A., and Koteliansky, V. E., 1988, Diversity of vinculin/meta-vinculin in human tissues and cultivated cells. Expression of muscle specific variants of vinculin in human aorta smooth muscle cells, J. Biol. Chem. 263: 6631–6635.

    PubMed  CAS  Google Scholar 

  • Bennett, J. P., Zaner, K. S., and Stossel, T. P., 1984, Isolation and some properties of macrophage a-actinin: evidence that it is not an actin gelling protein, Biochemistry 23: 5081–5086.

    PubMed  CAS  Google Scholar 

  • Bennett, V., 1979, Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues, Nature (London) 281: 597–599.

    CAS  Google Scholar 

  • Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54: 273–304.

    PubMed  CAS  Google Scholar 

  • Bettex-Galland, M., and Löscher, E. F., 1965, Thrombasthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem. 20: 1–35.

    PubMed  CAS  Google Scholar 

  • Bienz, D., and Clemetson, K. J., 1989, Human platelet glycoprotein Ia. One component is only expressed on the surface of activated platelets and may be a granule constituent, J. Biol. Chem. 264: 507–514.

    PubMed  CAS  Google Scholar 

  • Bourguignon, L. Y. W., Field, S., and Bourguignon, G. J., 1985, Phosphorylation of a tropomyosin-like (30kd) protein during platelet activation, J. Cell Biochem. 29: 19–30.

    PubMed  CAS  Google Scholar 

  • Boyles, J., Fox, J. E. B., Phillips, D. R., and Stemberg, P. E., 1985, Organization of the cytoskeleton in resting, discoid platelets: preservation of actin filaments by a modified fixation that prevents osmium damage, J. Cell Biol. 101: 1463–1472.

    PubMed  CAS  Google Scholar 

  • Bretscher, A., and Lynch, W., 1985, Identification and localization of immunoreactive forms of caldesmon in smooth and nonmuscle cells: A comparison with the distribution of tropomyosin and a-actinin, J. Cell Biol. 100: 1656–1663.

    PubMed  CAS  Google Scholar 

  • Bryan, J., and Kurth, M. C., 1984, Actin-gelsolin interactions. Evidence for two actin-binding sites, J. Biol. Chem. 259: 7480–7487.

    PubMed  CAS  Google Scholar 

  • Buck, C. A., and Horwitz, A. F., 1987a, Cell surface receptors for extracellular matrix molecules, Annu. Rev. Cell Biol. 3: 179–205.

    PubMed  CAS  Google Scholar 

  • Buck, C. A., and Horwitz, A. F., 1987b, Integrin, a transmembrane glycoprotein complex mediating cell-substratum adhesion, J. Cell Sci. Suppl. 8: 231–250.

    PubMed  CAS  Google Scholar 

  • Burn, P., 1988a, Reversible association of et-actinin with membranes and the cytoskeleton in relation to transmembrane signals, in Signal Transduction in Cytoplasmic Organization and Cell Motility ( P. Satir, J. S. Condeelis, and E. Lazarides, eds.), pp. 353–363, Alan R. Liss, Inc., New York.

    Google Scholar 

  • Burn, P., 1988b, Phosphatidylinsositol cycle and its possible involvement in the regulation of cytoskeletonmembrane interactions, J. Cell Biochem. 36: 15–24.

    PubMed  CAS  Google Scholar 

  • Burn, P., and Burger, M. M., 1987, The cytoskeletal protein vinculin contains transformation-sensitive, covalently bound lipid, Science 235: 476–479.

    PubMed  CAS  Google Scholar 

  • Burn, P., Rotman, A., Meyer, R. K., and Burger, M. M., 1985, Diacylglycerol in large a-actinin/actin complexes and in the cytoskeleton of activated platelets, Nature (London) 314: 469–472.

    CAS  Google Scholar 

  • Burn, P., Kupfer, A. and Singer, S. J., 1988, Dynamic membrane—cytoskeletal interactions: specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes, Proc. Natl. Acad. Sci. USA 85: 497–501.

    PubMed  CAS  Google Scholar 

  • Burridge, K., 1986, Substrate adhesions in normal and transformed fibroblasts: Organisation and regulation of cytoskeletal, membrane and extracellular matrix components at focal contacts, Cancer Rev. 4: 18–78.

    Google Scholar 

  • Burridge, K., and Connell, L., 1983, Talin: A cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction, Cell Motil. 3: 405–417.

    PubMed  CAS  Google Scholar 

  • Burridge, K., and Mangeat, P., 1984, An interaction between vinculin and talin, Nature (London) 308:744746.

    Google Scholar 

  • Burridge, K., Molony, L., and Kelly, T., 1987, Adhesion paques: Sites of transmembrane interaction between the extracellular matrix and the actin cytoskeleton, J. Cell Sci. Suppl. 8: 211–229.

    PubMed  CAS  Google Scholar 

  • Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C., 1988, Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton, Annu. Rev. Cell Biol. 4: 487–525.

    PubMed  CAS  Google Scholar 

  • Carlsson, L., Markey, F., Blikstad, I., Persson, T., and Lindberg, U., 1978, Reorganisation of actin in platelets stimulated by thrombin as measured by the DNAse 1 inhibition assay, Proc. Natl. Acad. Sci. USA 76: 6376–6380.

    Google Scholar 

  • Carroll, R. C., and Gerrard, J. M., 1982, Phosphorylation of platelet actin-binding protein during platelet activation, Blood 59: 466–471.

    PubMed  CAS  Google Scholar 

  • Carroll, R. C., Butler, R. G., and Morris, P.A., 1982, Separable assembly of platelet pseudopodal and contractile cytoskeletons, Cell 30: 385–393.

    PubMed  CAS  Google Scholar 

  • Carron, C. P., Hwo, S., Dingus, J., Benson, D. M., Meza, I., and Bryan, J., 1986, A re-evaluation of cytoplasmic gelsolin localization, J. Cell Biol. 102: 237–245.

    PubMed  CAS  Google Scholar 

  • Castle, A. G., and Crawford, N., 1979, Platelet microtubule subunit proteins, Thromb. Haemostasis 42: 1630–1633.

    Google Scholar 

  • Chaponnier, C., Patebex, P., and Gabbiani, G., 1986, Human plasma actin-depolymerizing factor. Purification, biological activity and localization in leukocytes and platelets, Eur. J. Biochem. 146: 267–276.

    Google Scholar 

  • Chen, M., and Stracher, A., 1989, In situ phosphorylation of platelet actin-binding protein by cAMP-dependent protein kinase stabilizes it against proteolysis by calpain, J. Biol. Chem. 264: 14282–14289.

    CAS  Google Scholar 

  • Clemetson, K. J., and Löscher, E. F., 1988, Membrane glycoprotein abnormalities in pathological platelets, Biochim. Biophys. Acta 947: 53–73.

    PubMed  CAS  Google Scholar 

  • Coller, B. S., Peerschke, E. I., Scudder, L. E., and Sullivan, C. A., 1983, Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: Additional evidence in support of GP Ib as a platelet receptor for von Willebrand factor, Blood 61: 99–110.

    PubMed  CAS  Google Scholar 

  • Collier, N. C., and Wang, K., 1982a, Purification and properties of human platelet P235. A high molecular weight substrate of endogenous calcium-activated protease(s), J. Biol. Chem. 257: 6937–6943.

    PubMed  CAS  Google Scholar 

  • Collier, N. C., and Wang, K., 1982b, Human platelet P235: a high Mr protein which restricts the length of actin filaments, FEBS Lett. 143: 205–210.

    PubMed  CAS  Google Scholar 

  • Cooper, D. R., de Ruiz Galaretta, C. M., Fanjul, L. F., Mojsilovic, L., Standaert, M. L., Pollet, R. J., and Farese, R. V., 1987, Insulin but not phorbol ester treatment increases phosphorylation of vinculin by protein kinase C in BC3H-1 myocytes, FEBS Lett. 214: 122–126.

    PubMed  CAS  Google Scholar 

  • Côté, G. P., and Smillie, L. B., 1981, The interaction of equine platelet tropomyosin with skeletal muscle actin, J. Biol. Chem. 256: 7257–7261.

    PubMed  Google Scholar 

  • Côté, G., Lewis, W. G. and Smillie, L. B., 1978, Non-polymerizability of platelet tropomyosin and its NH2and COOH-terminal sequences, FEBS Lett. 91: 237–241.

    PubMed  Google Scholar 

  • Craig, S. W., and Pollard, T. D., 1982, Actin-binding proteins, Trends Biochem. Sci. 7: 88–92.

    CAS  Google Scholar 

  • Daniel, J. L., Molish, I. R., and Holmsen, H., 1981, Myosin phosphorylation in intact platelets, J. Biol. Chem. 256: 7510–7514.

    PubMed  CAS  Google Scholar 

  • Davies, G. E., and Cohen, C. M., 1985, Platelets contain proteins immunologically related to red cell spectrin and protein 4.1, Blood 65: 52–59.

    PubMed  CAS  Google Scholar 

  • Debus, E., Weber, K., and Osborn, M., 1981, The cytoskeleton of blood platelets viewed by immunofluorescence microscopy, Eur. J. Cell Biol. 24: 45–52.

    PubMed  CAS  Google Scholar 

  • Der Terrossian, E., Fuller, S. D., Stewart, M., and Weeds, A. G., 1981, Porcine platelet tropomyosin. Purification, characterization and paracrystal formation, J. Mol. Biol. 153: 147–167.

    Google Scholar 

  • Dingus, J., Hwo, S., and Bryan, J., 1986, Identification by monoclonal antibodies and characterization of human platelet caldesmon, J. Cell Biol. 102: 1748–1757.

    PubMed  CAS  Google Scholar 

  • Drenckhahn, D., Beckerle, M., Burridge, K., and Otto, J., 1988, Identification and subcellular location of talin in various cell types and tissues by means of [125I]vinculin overlay, immunoblotting and immunocytochemistry, Eur. J. Cell Biol. 46: 513–522.

    PubMed  CAS  Google Scholar 

  • Escolar, G., Krumwiede, M., and White, J. G., 1986, Organization of the actin cytoskeleton of resting and activated platelets in suspension, Am. J. Pathol. 123: 86–94.

    PubMed  CAS  Google Scholar 

  • Escolar, G., Sauk, J., Bravo, M. L., Krumwiede, M., and White, J. G., 1987, Immunogold staining of microtubules in resting and activated platelets, Am. J. Hematol. 24: 177–188.

    PubMed  CAS  Google Scholar 

  • Ezzell, R. M., Kenney, D. M., Egan, S., Stossel, T. P., and Hartwig, J. H., 1988, Localization of the domain of actin-binding protein that binds to membrane glycoprotein lb and actin in human platelets, J. Biol. Chem. 263: 13303–13309.

    PubMed  CAS  Google Scholar 

  • Faquin, W. C., Hussain, A., Hung, J., and Branton, D., 1988, An immunoreactive form of erythrocyte protein 4.9 is present in non-erythroid cells, Eur. J. Cell Biol. 46: 168–175.

    PubMed  CAS  Google Scholar 

  • Fine, R. E., and Blitz, A. L., 1975, A chemical comparison of tropomyosins from muscle and non-muscle tissues, J. Mol. Biol. 95: 447–454.

    PubMed  CAS  Google Scholar 

  • Fox, J. E. B., 1985a, Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets, J. Clin. Invest. 76: 1673–1683.

    PubMed  CAS  Google Scholar 

  • Fox, J. E. B., 1985b, Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes, J. Biol. Chem. 260: 11970–11977.

    PubMed  CAS  Google Scholar 

  • Fox, J. E. B., 1987, The platelet cytoskeleton, in Thrombosis and Haemostasis, 1987 ( M. Verstraete, J. Vermylen, R. Lijnen, and J. Arnout, eds.), pp. 175–225, Leuven University Press, Leuven, Belgium.

    Google Scholar 

  • Fox, J. E. B., and Berndt, M. C., 1989, Cyclic AMP-dependant phosphorylation of glycoprotein Ib inhibits collagen-induced polymerization of actin in platelets, J. Biol. Chem., 264: 9520–9526.

    PubMed  CAS  Google Scholar 

  • Fox, J. E. B., and Boyles, J. K., 1988a, Characterization of the platelet membrane cytoskeleton, in Signal Transduction in Cytoplasmic Organization and Cell Mobility ( P. Satir, J. S. Condeelis, and E. Lazarides, eds.), pp. 313–324, Alan R. Liss., Inc., New York.

    Google Scholar 

  • Fox, J. E. B., and Boyles, J. K., 1988b, The membrane skeleton—A distinct structure that regulates the function of cells, BioEssays 8: 14–18.

    PubMed  CAS  Google Scholar 

  • Fox, J. E. B., Reynolds, C. C., and Phillips, D. R., 1983, Calcium-dependent proteolysis occurs during platelet aggregation, J. Biol. Chem. 258: 9973–9981.

    PubMed  CAS  Google Scholar 

  • Fox, J. E. B., Boyles, J. K., Reynolds, C. C., and Phillips, D. R., 1984, Actin filament content and organization in unstimulated platelets, J. Cell Biol. 98: 1985–1991.

    PubMed  CAS  Google Scholar 

  • Fox, J. E. B., Goll, D. E., Reynolds, C. C., and Phillips, D. R., 1985, Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Caz+-dependent protease during platelet aggregation, J. Biol. Chem. 260: 1060–1066.

    PubMed  CAS  Google Scholar 

  • Fox, J. E. B., Reynolds, C. C., Morrow, J. S., and Phillips, D. R., 1987, Spectrin is associated with membrane-bound actin filaments and is hydrolysed by the Caz+-dependant protease during platelet activation, Blood 69: 537–545.

    PubMed  CAS  Google Scholar 

  • Fox, J. E. B., Boyles, J. K., Berndt, M. C., Steffen, P. K. and Anderson, L. K., 1988, Identification of a membrane skeleton in platelets, J. Cell Biol. 106: 1525–1538.

    PubMed  CAS  Google Scholar 

  • Friedrichs, B., Koob, R., Kraemer, D., and Drenckhahn, D., 1989, Demonstration of immunoreactive forms of erythrocyte protein 4.2 in nonerythroid cells and tissues, Eur. J. Cell Biol. 48: 121–127.

    PubMed  CAS  Google Scholar 

  • Fürst, D. O., Cross, R. A., De Mey, J., and Small, J. V., 1986, Caldesmon is an elongated, flexible molecule localized in the actomyosin domains of smooth muscle, EMBO J. 5: 251–257.

    PubMed  Google Scholar 

  • Gache, Y., Landon, F., and Olomucki, A., 1984, Polymorphism of a-actinin from human blood platelets. Homodimeric and heterodimeric forms, Eur. J. Biochem. 141: 57–61.

    PubMed  CAS  Google Scholar 

  • Geiger, B., 1979, A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells, Cell 18: 193–205.

    PubMed  CAS  Google Scholar 

  • Gimona, M., Small, J. V., Moeremans, M., Van Damme, J., Puype, M., and Vandekerckhove, J., 1988, Porcine vinculin and metavinculin differ by a 68-residue insert located close to the carboxy-terminal part of the molecule, EMBO J. 7: 2329–2334.

    PubMed  CAS  Google Scholar 

  • Giometti, C. S., and Anderson, N. L., 1984, Tropomyosin heterogeneity in human cells, J. Biol. Chem. 259: 14113–14120.

    PubMed  CAS  Google Scholar 

  • Golden, A., Nemeth, S. P., and Brugge, J. S., 1986, Blood platelets express high levels of the pp60c–srcspecific tyrosine kinase activity, Proc. Natl. Acad. Sci. USA 83: 852–856.

    PubMed  CAS  Google Scholar 

  • Gonnella, P. A., and Nachmias, V. T., 1981, Platelet activation and microfilament bundling, J. Cell Biol. 89: 146–151.

    PubMed  CAS  Google Scholar 

  • Hack, N., and Crawford, N., 1984, Two-dimensional polyacrylamide gel electrophoresis of the proteins and glycoproteins of purified human platelet surface and intracellular membranes, Biochem. J 222: 235.

    PubMed  CAS  Google Scholar 

  • Harris, H. E., and Weeds, A. G., 1978, Platelet actin: sub-cellular distribution and association with profilin, FEBS Lett. 90: 84–88.

    PubMed  CAS  Google Scholar 

  • Hartwig, J. H., Chambers, K. A., Hopcia, K. L., and Kwiatkowski, D. J., 1989a, Association of profilin with filament-free regions of human leukocyte and platelet membranes and reversible membrane binding during platelet activation, J. Cell Biol. 109: 1571–1579.

    PubMed  CAS  Google Scholar 

  • Hartwig, J. H., Chambers, K. A., and Stossel, T. P., 1989b, Association of gelsolin with actin filaments and cell membranes of macrophages and platelets, J. Cell Biol. 108: 467–479.

    PubMed  CAS  Google Scholar 

  • Hemler, M. E., Crouse, C., Takada, Y., and Sonnenberg, A., 1988, Multiple very late antigen (VLA) and heterodimers on platelets. Evidence for distinct VLA-2, VLA-5 (fibronectin receptor), and VLA-6 structures, J. Biol. Chem. 263: 7660–7665.

    PubMed  CAS  Google Scholar 

  • Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, K., 1986, Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage, Nature (London) 320: 531–533.

    CAS  Google Scholar 

  • Hunter, T., Sefton, B. M., Ball, E. H., and Singer, S. J., 1981, Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus, Cell 24: 165–174.

    PubMed  Google Scholar 

  • Isenberg, W. M., McEver, R. P., Phillips, D. R., Shuman, M. A., and Bainton, D. F., 1987, The platelet fibrinogen receptor: An immunogold-surface replica study of agonist-induced ligand binding and receptor clustering, J. Cell Biol. 104: 1655–1663.

    PubMed  CAS  Google Scholar 

  • Ito, S., Werth, D. K., Richert, N. D., and Pastan, I., 1983, Vinculin phosphorylation by the src kinase. Interaction of vinculin with phospholipid vesicles, J. Biol. Chem. 258: 14626–14631.

    PubMed  CAS  Google Scholar 

  • Janmey, P. A., and Stossel, T. P., 1987, Modulation of gelsolin function by phosphatidylinositol 4,5-biphosphate, Nature (London) 325: 362–364.

    CAS  Google Scholar 

  • Jennings, L. K., Fox, J. E. B., Edwards, H. H., and Phillips, D. R., 1981, Changes in the cytoskeletal structure of human platelets following thrombin activation, J. Biol. Chem. 256: 6927–6932.

    PubMed  CAS  Google Scholar 

  • Kakiuchi, R., Inui, M., Morimoto, K., Kanda, K., Sobue, K., and Kakiuchi, S., 1983, Caldesmon, a calmodulin-binding, F actin-interacting protein, is present in aorta, uterus and platelets, FEBS Lett. 154: 351–356.

    PubMed  CAS  Google Scholar 

  • Karlsson, R., Lassing, I., Hoglund, A. S., and Lindberg, U., 1984, The organization of microfilaments in spreading platelets: A comparison with fibroblasts and glial cells, J. Cell Physiol. 121: 96–113.

    PubMed  CAS  Google Scholar 

  • Kellie, S., and Wigglesworth, N. M., 1987, The cytoskeletal protein vinculin is acylated by myristic acid, FEBS Lett. 213: 428–432.

    PubMed  CAS  Google Scholar 

  • Kellie, S., Patel, B., Wigglesworth, N. M., Critchley, D. R., and Wyke, J. A., 1986, The use of Rous sarcoma virus transformation mutants to study the relationships between vinculin phosphorylation, pp60 location and adhesion plaque integrity, Exp. Cell Res. 165: 216–228.

    PubMed  CAS  Google Scholar 

  • Kenney, D. M., and Chao, F. C., 1980, Jonophore-induced disassembly of blood platelet microtubules: Effect of cyclic AMP and indomethacin, J. Cell Physiol. 103: 289–298.

    PubMed  CAS  Google Scholar 

  • Kenney, D. M., and Linck, R. W., 1985, The cytoskeleton of unstimulated platelets: Structure and composition of the isolated marginal microtubule band. J. Cell Sci. 78: 1–22.

    PubMed  CAS  Google Scholar 

  • Kenney, D. M., Weiss, L. D., and Linck, R. W., 1988, A novel microtubule protein in the marginal band of human blood platelets, J. Biol. Chem. 263: 1432–1438.

    PubMed  CAS  Google Scholar 

  • Korn, E. D., and Hammer, J. A., III, 1988, Myosins of nonmuscle cells, Annu. Rev. Biophys. Biophys. Chem. 17: 23–45.

    PubMed  CAS  Google Scholar 

  • Koteliansky, V. E., Gneushev, G. N., Glukhova, M. A., Venyaminov, S. Y., and Muszbek, L., 1984, Identification and isolation of vinculin from platelets, FEBS Lett. 165: 26–30.

    PubMed  CAS  Google Scholar 

  • Kunicki, T. J., Nugent, D. J., Staats, S. J., Orchekowski, R. P., Wayner, E. A., and Carter, W. G., 1988, The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet glycoprotein Ia-lla complex, J. Biol. Chem. 263: 4516–4519.

    PubMed  CAS  Google Scholar 

  • Kupfer, A., Singer, S. J., and Dennert, G., 1986, On the mechanism of uni-directional killing in mixtures of two cytotoxic T-lymphocytes, J. Exp. Med. 163: 489–498.

    PubMed  CAS  Google Scholar 

  • Kurth, M. C., and Bryan, J., 1984, Platelet activation induces the formation of a stable gelsolin-actin complex from monomeric gelsolin, J. Biol. Chem. 259: 7473–7479.

    PubMed  CAS  Google Scholar 

  • Kwiatkowski, D. J., and Bruns, G. A. P., 1988, Human profilin. Molecular cloning, sequence comparison and chromosomal analysis, J. Biol. Chem. 263: 5910–5915.

    PubMed  CAS  Google Scholar 

  • Kwiatkowski, D. J., Janmey, P. A., and Yin, H. L., 1989, Identification of critical functional and regulatory domains in gelsolin, J. Cell Biol. 108: 1717–1726.

    PubMed  CAS  Google Scholar 

  • Lam, S. C.-T., Plow, E. F., D’Souza, S. E., Cheresh, D. A., Frelinger, A. L., and Ginsberg, M. H., 1989, Isolation and characterization of a platelet membrane protein related to the vitronectin receptor, J. Biol. Chem. 264: 3742–3749.

    PubMed  CAS  Google Scholar 

  • Landon, F., and Olomucki, A., 1983, Isolation and physico-chemical properties of blood platelet a-actinin, Biochim. Biophys. Acta 742: 129–134.

    PubMed  CAS  Google Scholar 

  • Landon, F., Hue, C., Thorne, F., Oriol, C., and Olomucki, A., 1977, Human platelet actin. Evidence of 13 and y forms and similarity of properties with sarcoplasmic actin, Eur. J. Biochem. 81: 571–577.

    PubMed  CAS  Google Scholar 

  • Landon, F., Gache, Y., Touitou, H., and Olomucki, A., 1985, Properties of two isoforms of human blood platelet a-actinin, Eur. J. Biochem. 153: 231–237.

    PubMed  CAS  Google Scholar 

  • Langanger, G., De Mey, J., Moermans, M., Daneels, G., De Brabander, M., and Small, J. V., 1984, Ultrastructural localization of a-actinin and Eilamin in cultured cells with the immunogold staining (IGS) method, J. Cell Biol. 99: 1324–1334.

    PubMed  CAS  Google Scholar 

  • Langer, B. G., Gonnella, P. A., and Nachmias, V. T., 1984, a-Actinin and vinculin in normal and thrombasthenic platelets, Blood 63: 606–614.

    Google Scholar 

  • Lassing, I., and Lindberg, U., 1985, Specific interaction between phosphatidyl 4,5-bisphosphate and profilactin, Nature (London) 314: 472–474.

    CAS  Google Scholar 

  • Lassing, I., and Lindberg, U., 1988a, Specificity of the interaction between phosphatidylinositol 4,5-bisphosphate and the profilin: actin complex, J. Cell Biochem. 37: 255–267.

    PubMed  CAS  Google Scholar 

  • Lassing, I., and Lindberg, U., 1988b, Evidence that the phosphatidylinositol cycle is linked to cell motility, Exp. Cell Res. 174: 1–15.

    PubMed  CAS  Google Scholar 

  • Lin, J. J.-C., Lin, L.-C., Davis-Nanthakumar, E. J., and Lourim, D., 1988, Monoclonal antibodies against caldesmon, a Ca+ + /calmodulin-and actin-binding protein of smooth muscle and nonmuscle cells, Hybridoma 7: 273–288.

    PubMed  CAS  Google Scholar 

  • Lind, S. E., Jamey, P. A., Chaponnier, C., Herbert, T.-J., and Stossel, T. P., 1987, Reversible binding of actin to gelsolin and profilin in human platelet extracts, J. Cell Biol. 105: 833–842.

    PubMed  CAS  Google Scholar 

  • Livne, A., Packham, M. A., Guccione, M. A., and Mustard, J. F., 1988, Aggregation-related association of lipid with the cytoskeleton of rabbit and human platelets prelabeled with [3H]palmitic acid. Similar effects of adenosine diphosphate-and thrombin-induced aggregation, J. Clin. Invest. 81: 288–299.

    PubMed  CAS  Google Scholar 

  • Loftus, J. C., and Albrecht, R. M., 1984, Redistribution of the fibrinogen receptor of human platelets after surface activation, J. Cell Biol. 99: 822–829.

    PubMed  CAS  Google Scholar 

  • Loftus, J. C., Choate, J., and Albrecht, R. M., 1984, Platelet activation and cytoskeletal reorganization: High voltage electron microscopic examination of intact and triton-extracted whole mounts, J. Cell Biol. 98: 2019–2025.

    PubMed  CAS  Google Scholar 

  • Lopez, J. A., Chung, D. W., Fujikawa, K., Hagen, F. S., Papayannopoulou, T., and Roth, G. J., 1987, Cloning of the a chain of human platelet glycoprotein Ib: A transmembrane protein with homology to leucine-rich a2-glycoprotein, Proc. Natl. Acad. Sci. USA 84: 5615–5619.

    PubMed  CAS  Google Scholar 

  • MacLeod, A. R., and Gooding, C., 1988, Human hTMet gene: Expression in smooth muscle and nonmuscle tissue, Mol. Cell. Biol. 8: 433–440.

    PubMed  CAS  Google Scholar 

  • Mangeat, P., and Burridge, K., 1984, Actin-membrane interaction in fibroblasts: What proteins are involved in this association?, J. Cell Biol. 99: 95s - 103s.

    PubMed  CAS  Google Scholar 

  • Markey, F., Lindberg, U., and Eriksson, L., 1978, Human platelets contain profilin, a potential regulator of actin polymerisability, FEBS Lett. 88: 75–79.

    PubMed  CAS  Google Scholar 

  • Markey, F., Persson, T., and Lindberg, U., 1981, Characterisation of platelet extracts before and after stimulation with respect to the possible role of profilactin as microfilament precursor, Cell 23: 145–153.

    PubMed  CAS  Google Scholar 

  • Marston, S. B., and Smith, C. W. J., 1985, The thin filaments of smooth muscles, J. Muscle Res. Cell Motil. 6: 669–708.

    PubMed  CAS  Google Scholar 

  • Menashi, S., Weintroub, H., and Crawford, N., 1981, Characterization of human platelet surface and intracellular membranes isolated by free flow electrophoresis, J. Biol. Chem. 256: 4095–4101.

    PubMed  CAS  Google Scholar 

  • Meyer, R. K., Schindler, H., and Burger, M. M., 1982, a-Actinin interacts specifically with model membranes containing glycerides and fatty acids, Proc. Natl. Acad. Sci. USA 79: 4280–4284.

    Google Scholar 

  • Mueller, S. C., Kelly, T., Dai, M., Dai, H. and Chen, W.-T., 1989, Dynamic cytoskeleton—integrin associations induced by cell binding to immobilized fibronectin, J. Cell Biol. 109: 3455–3464.

    PubMed  CAS  Google Scholar 

  • Muszbek, L., Adany, R., Glukhova, M. A., Frid, M. G., Kabakov, A. E., and Koteliansky, V. E., 1987, The identification of vimentin, an intermediate filament subunit protein in human platelets, Thromb. Haemostasis 58: 301.

    Google Scholar 

  • Nakajima-Iijima, S., Hamada, H., Reddy, P., and Kakunaga, T., 1985, Molecular structure of the human cytoplasmic f3-actin gene: Interspecies homology of sequences in the introns, Proc. Natl. Acad. Sci. USA 82: 6133–6137.

    PubMed  CAS  Google Scholar 

  • Nakata, T., and Hirokawa, N., 1987, Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique, J. Cell Biol. 105: 1771–1780.

    PubMed  CAS  Google Scholar 

  • Ngai, P. K., and Walsh, M. P., 1984, Inhibition of smooth muscle actin-activated myosin Mgt+-ATPase activity by caldesmon, J. Biol. Chem. 259: 13656–13659.

    PubMed  CAS  Google Scholar 

  • Nieuwenhuis, H. K., Sakariassen, K. S., Houdijk, W. P. M., Nievelstein, P. F. E. M., and Sixma, J. J., 1986, Deficiency of platelet membrane glycoprotein Ia associated with a decreased platelet adhesion to subendothelium: A defect in platelet spreading, Blood 68: 692–695.

    PubMed  CAS  Google Scholar 

  • Nurden, A. T., George, J. N., and Phillips, D. R., 1986, Platelet membrane glycoproteins: Their structure, function and modification in disease, in Biochemistry of Platelets ( D. R. Phillips, and M. A. Shuman, eds.), pp. 160–224, Academic Press, London.

    Google Scholar 

  • O’Halloran, T., Beckerle, M. C., and Burridge, K., 1985, Identification of talin as a major protein implicated in platelet activation, Nature (London) 317: 449–451.

    Google Scholar 

  • Ohtake, N., 1986, Attachment of cytoskeletons to cell membranes in human blood platelets as revealed by the quick-freezing and deep-etching replica method, J. Ultrastruct. Mol. Struct. Res. 95: 84–95.

    PubMed  CAS  Google Scholar 

  • Okita, J. R., Pidard, D., Newman, P. J., Montgomery, R. R., and Kunicki, T. R., 1985, On the association of glycoprotein Ib and actin-binding protein in human platelets, J. Cell Biol. 100: 317–321.

    PubMed  CAS  Google Scholar 

  • Onji, T., Tagaki, M., and Shibata, N., 1987, Caldesmon specifically inhibits the effect of tropomyosin on actomyosin system in platelet, Biochem. Biophys. Res. Commun. 143: 475–481.

    PubMed  CAS  Google Scholar 

  • Oster, G. F., and Perelson, A. S., 1987, The physics of cell motility, J. Cell Sci. Suppl. 8: 35–54.

    PubMed  CAS  Google Scholar 

  • Owada, M. K., Hakura, A., Iida, K., Yahara, I., Sobue, K., and Kakuichi, S., 1984, Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: Comparison of normal and transformed cells, Proc. Natl. Acad. Sci. USA 81: 3133–3137.

    PubMed  CAS  Google Scholar 

  • Painter, R. G., and Ginsberg, M., 1984. Centripetal myosin redistribution in thrombin-stimulated platelets, Exp. Cell Res. 155: 198–212.

    PubMed  CAS  Google Scholar 

  • Painter, R. G., Ginsberg, M., and Jacques, B., 1982, Concanavalin A induces interactions between surface glycoproteins and the platelet cytoskeleton, J. Cell Biol. 92: 565–573.

    PubMed  CAS  Google Scholar 

  • Painter, R. G., Gaarde, W., and Ginsberg, M. H., 1985, Direct evidence for the interaction of platelet surface membrane proteins gpllb and III with cytoskeletal components: Protein crosslinking studies, J. Cell Biochem. 27: 277–290.

    PubMed  CAS  Google Scholar 

  • Parise, L. V., 1989, The structure and function of platelet integrins, Curr. Opinion Cell Biol. 1: 947–952.

    PubMed  CAS  Google Scholar 

  • Peleg, I., Kahane, I., Eldor, A., Groschel-Stewart, U., Mestan, J., and Muhlrad, A., 1983, Structural properties of myosin from the particulate fraction of human blood platelets, J. Biol. Chem. 258: 9290–9295.

    PubMed  CAS  Google Scholar 

  • Peleg, I., Muhlrad, A., Eldor, A., Groschel-Stewart, U., and Kahane, I., 1984, Characterization of the ATPase activities of myosins isolated from the membrane and the cytoplasmic fractions of human platelets, Arch. Biochem. Biophys. 243: 442–453.

    Google Scholar 

  • Phillips, D. R., and Agin, P. P., 1977, Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulphide bonds using nonreduced-reduced two-dimensional gel electrophoresis, J. Biol. Chem. 252: 2121–2126.

    PubMed  CAS  Google Scholar 

  • Phillips, D. R., Jennings, L. K., and Edwards, H. H., 1980, Identification of membrane proteins mediating the interaction of human platelets, J. Cell Biol. 86: 77–86.

    PubMed  CAS  Google Scholar 

  • Phillips, D. R., Charo, I. F., Parise, L. V., and Fitzgerald, L. A., 1988, The platelet membrane glycoprotein IIb-IIIa complex, Blood 71: 831–843.

    PubMed  CAS  Google Scholar 

  • Pho, D. B., Vasseur, C., Desbruyeres, E., and Olomucki, A., 1984, Evidence for the presence of tropomyosin in the cytoskeleton of ADP- and thrombin-stimulated blood platelets, FEBS Lett. 173: 164–168.

    PubMed  CAS  Google Scholar 

  • Pho, D. B., Desbruyères, E., Der Terrossian, E., and Olomucki, A., 1986, Cytoskeletons of ADP- and thrombin-stimulated blood platelets. Presence of a caldesmon-like protein, a-actinin and gelsolin at different steps of the stimulation, FEBS Lett. 202: 117–121.

    PubMed  CAS  Google Scholar 

  • Piotrowicz, R. S., Orchekowski, R. P., Nugent, D. J., Yamada, K. Y., and Kunicki, T. J., 1988, Glycoprotein le-IIa functions as an activation-independent fibronectin receptor on human platelets, J. Cell Biol. 106: 1359–1364.

    PubMed  CAS  Google Scholar 

  • Pischel, K. D., Hemler, M. E., Huang, C., Bluestein, H. G., and Woods, V. L., 1987, Use of the monoclonal antibody 12F1 to characterize the differentiation antigen VLA-2, J. Immunol. 138: 226–233.

    PubMed  CAS  Google Scholar 

  • Pischel, K. D., Bluestein, H. G., and Woods, V. L., 1988, Platelet glycoproteins la, Ic and IIa are physicochemically indistinguishable from the very late activation antigens adhesion-related proteins of lymphocytes and other cell types, J. Clin. Invest. 81: 505–513.

    PubMed  CAS  Google Scholar 

  • Pollard, T. D., and Cooper, J. A. 1986, Actin and actin-binding proteins. A critical evaluation of mechanisms and functions, Annu. Rev. Biochem. 55: 987–1035.

    PubMed  CAS  Google Scholar 

  • Pollard, T. D., Thomas, S. M., and Niederman, R., 1974, Human platelet myosin. I. Purification by a rapid method applicable to other nonmuscle cells, Anal. Biochem. 60: 258–266.

    PubMed  CAS  Google Scholar 

  • Pribluda, V., and Rotman, A., 1982, Dynamics of membrane-cytoskeleton interactions in activated blood platelets, Biochemistry 21: 2825–2832.

    PubMed  CAS  Google Scholar 

  • Prulière, G., d’Albis, A. and Der Terrossian, E., 1986, Effect of tropomyosin in the interactions of actin with actin-binding proteins isolated from pig platelets, Eur. J. Biochem. 159: 535–547.

    PubMed  Google Scholar 

  • Puszkin, E. G., Jenkins, C. S. P., Ores-Carton, C., and Zucker, M. B., 1985, Platelet cytoskeleton a-actinin in normal and thrombasthenic platelets: distribution and immunologic characterization, J. Lab. Clin. Med. 105: 52–62.

    PubMed  CAS  Google Scholar 

  • Reeber, M. J., Tablin, F., Bulinski, J. C., and Nachmias, V. T., 1984, 210k MAP, microtubules and the cytoskeleton of bovine and human platelets, J. Cell Biol. 99: 193a.

    Google Scholar 

  • Rosenberg, S., Stracher, A., and Lucas, R. C., 1981a, Isolation and characterization of actin and actin-binding protein from human platelets, J. Cell Biol. 91: 201–211.

    PubMed  CAS  Google Scholar 

  • Rosenberg, S., Stracher, A., and Burridge, K., 1981b, Isolation and characterization of a calcium-sensitive aactinin-like protein from human platelet cytoskeletons, J. Biol. Chem. 256: 12986–12991.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, G. C., Hou, D. C., Dingus, J., Meza, I., and Bryan, J., 1985, Isolation and partial characterization of human platelet vinculin, J. Cell Biol. 100: 669–676.

    PubMed  CAS  Google Scholar 

  • Rotman, A., 1984, Receptor and non receptor-mediated activation of blood platelets. Effect on membranecytoskeleton interaction, Biochem. Biophys. Res. Commun. 120: 898–906.

    PubMed  CAS  Google Scholar 

  • Rotman, A., Heldman, J., and Linder, S., 1982, Association of membrane and cytoplasmic proteins with the cytoskeleton in blood platelets, Biochemistry 21: 1713–1719.

    PubMed  CAS  Google Scholar 

  • Ruhnau, K., and Wegner, A., 1988, Evidence for direct binding of vinculin to actin filaments, FEBS Lett. 228: 105–108.

    PubMed  CAS  Google Scholar 

  • Sakariassen, K. S., Nievelstein, P. F. E. M., Coller, B. S., and Sixma, J. J., 1986, The role of platelet membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery subendothelium, Br. J. Haematol. 63: 681–691.

    PubMed  CAS  Google Scholar 

  • Santoro, S. A., 1986, Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen, Cell 48: 913–920.

    Google Scholar 

  • Santoro, S. A., Rajpara, S. M., Staatz, W. D., and Woods, V. L., Jr., 1988, Isolation and characterization of a platelet surface collagen binding complex related to VLA-2, Biochem. Biophys. Res. Commun. 153: 217–223.

    PubMed  CAS  Google Scholar 

  • Santoso, S., Zimmerman, U., Neppert, J., and Mueller-Eckhardt, C., 1986, Receptor patching and capping of platelet membranes induced by monoclonal antibodies, Blood 67: 343–349.

    PubMed  CAS  Google Scholar 

  • Schliwa, M., 1981, Proteins associated with cytoplasmic actin, Cell 25: 587–590.

    PubMed  CAS  Google Scholar 

  • Schollmeyer, J. V., Rao, G. H. R., and White, J. G., 1978, An actin-binding protein in human platelets, Am. J. Pathol. 93: 433–445.

    PubMed  CAS  Google Scholar 

  • Siess, W., 1989, Molecular mechanisms of platelet activation, Physiol. Rev. 69: 58–178.

    PubMed  CAS  Google Scholar 

  • Singer, I. I., and Paradiso, P. R., 1981, A transmembrane relationship between fibronectin and vinculin (130K protein): Serum modulation in normal and transformed hamster fibroblasts, Cell 24: 481–492.

    PubMed  CAS  Google Scholar 

  • Sixma, J. J., Van den Berg, A., Jockusch, B. M., and Hartwig, J., 1989, Immunoelectron microscopic localization of actin, a-actinin, actin-binding protein and myosin in resting and activated human blood platelets, Eur. J. Cell Biol. 48: 271–281.

    PubMed  CAS  Google Scholar 

  • Small, J. V., 1985, Geometry of actin-membrane attachments in the smooth muscle cell: The localisations of vinculin and a-actinin, EMBO J. 4: 45–49.

    PubMed  CAS  Google Scholar 

  • Small, J. V., 1989, Microfilament-based motility in non-muscle cells, Curr. Opin. Cell Biol. 1: 75–79.

    PubMed  CAS  Google Scholar 

  • Small, J. V., Fürst, D. O., and De Mey, J., 1986, Localization of filamin in smooth muscle, J. Cell Biol. 102: 210–220.

    PubMed  CAS  Google Scholar 

  • Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S., 1981, Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin, Proc. Natl. Acad. Sci. USA 78: 5652–5655.

    PubMed  CAS  Google Scholar 

  • Sobue, K., Morimoto, K., Inui, M., Kanda, K., and Kakiuchi, S., 1982, Control of actin-myosin interaction of gizzard smooth muscle by calmodulin-and caldesmon-linked flip-flop mechanism, Biomed. Res. 3: 188–196.

    CAS  Google Scholar 

  • Sobue, K., Kanda, K., Tanaka, T., and Ueki, N., 1988, Caldesmon: A common actin-linked regulatory protein in the smooth muscle and nonmuscle contractile system, J. Cell Biochem. 37: 317–325.

    PubMed  CAS  Google Scholar 

  • Solum, N. O., 1985, Platelet membrane proteins, Semin. Hematol. 22: 289–302.

    PubMed  CAS  Google Scholar 

  • Solum, N. O., and Olsen, T. M., 1984, Glycoprotein Ib in the triton-insoluble (cytoskeletal) fraction of blood platelets, Biochim. Biophys. Acta 799: 209–220.

    PubMed  CAS  Google Scholar 

  • Solum, N. O., and Olsen, T. M., 1985, Effects of diamide and dibucane on platelet glycoprotein Ib, actin-binding protein and cytoskeleton, Biochim. Biophys. Acta 817: 249–260.

    PubMed  CAS  Google Scholar 

  • Solum, N. O., Hagen, I., Filion-Myklebust, C., and Stabaek, T., 1980, Platelet glycocalicin: Its membrane association and solubilization in aqueous media, Biochim, Biophys. Acta 597: 235–246.

    CAS  Google Scholar 

  • Solum, N. O., Olsen, T. M., Gogstad, G. O., Hagen, I., and Brosstad, F., 1983, Demonstration of a new glycoprotein lb-related component in platelet extracts prepared in the presence of leupeptin, Biochim. Biophys. Acta 729: 53–61.

    PubMed  CAS  Google Scholar 

  • Sonnenberg, A., Modderman, P. W., and Hogervorst, F., 1988, Laminin receptor on platelets is the integrin VLA-6 Nature (London) 336: 487–489.

    CAS  Google Scholar 

  • Spiegel, J. E., Beardsley, D. S., Southwick, F. S., and Lux, S. E., 1984, An analouge of the erythrocyte membrane skeletal protein 4.1 in nonerythroid cells, J. Cell Biol. 99: 886–893.

    PubMed  CAS  Google Scholar 

  • Staatz, W. D., Rajpara, S. M., Wayner, E. A., Carter, W. G., and Santoro, S. A., 1989, The membrane glycoprotein la-IIa (VLA-2) complex mediates the Mg + + -dependent adhesion of platelets to collagen, J. Cell Biol. 108: 1917–1924.

    PubMed  CAS  Google Scholar 

  • Steiner, M., and Ikeda, Y., 1979, Quantitative assessment of polymerized and depolymerized platelet micro-tubules: Changes caused by aggregating agents, J. Clin. Invest. 63: 443–448.

    PubMed  CAS  Google Scholar 

  • Stossel, T. P., Chaponnier, R. M., Ezzell, R. M., Hartwig, J. H., Janmey,-P. A., Kwiatkowski, D. J., Lind, S. E., Smith, D. B., Southwick, F. S., Yin, H. L., and Zaner, K. S., 1985, Nonmuscle actin-binding proteins, Annu. Rev. Cell Biol. 1: 353–402.

    PubMed  CAS  Google Scholar 

  • Tablin, F., and Taube, D., 1986, Association of intermediate filaments and microtubules in human and bovine platelets, J. Cell Biol. 103: 562a.

    Google Scholar 

  • Tablin, F., and Taube, D., 1987, Platelet intermediate filaments: Detection of a vimentinlike protein in human and bovine platelets, Cell Motil. 8: 61–67.

    CAS  Google Scholar 

  • Takamatsu, J., Horne, M. K., and Gralnick, H. R. 1986, Identification of the thrombin receptor on human platelets by chemical crosslinking, J. Clin. Invest. 77: 362–368.

    PubMed  CAS  Google Scholar 

  • Takashima, T., Matsumura, S., Kariya, T., Sunaga, T., and Kumon, A., 1988, Studies on the physical states of human platelet myosin in crude extracts, J. Biochem. (Tokyo) 104: 1027–1035.

    CAS  Google Scholar 

  • Tanaka, K., Onji, T., Okamoto, K., Matsusaka, T., Taniguchi, H., and Shibata, N., 1984, Reorganisation of contractile elements in the platelet during clot retraction, J. Ultrastruct. Res. 89: 98–109.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Shibata, N., Okamoto, K., Matsusaka, T. Fukuda, H., Takagi, M., Fujii, N., and Onji, T., 1986, Reorganisation of myosin in surface-activated spreading platelets, J. Ultrastruct. Mol. Struct. Res. 97: 165–186.

    CAS  Google Scholar 

  • Thomas, A., Lindsay, J., Wilkinson, M., and Bodmer. J., 1988, HLA-D region a-chain monoclonal antibodies Cross-reaction between an anti-DP a-chain antibody and smooth muscle, J. Pathol. 154: 353–363.

    PubMed  CAS  Google Scholar 

  • Turner, C. E. and Burridge, K., 1989, Detection of metavinculin in human platelets using a modified talin overlay assay, Eur. J. Cell Biol. 49: 202–206.

    PubMed  CAS  Google Scholar 

  • Vandekerckhove, J., and Weber, K., 1979, The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle, Differentiation 14: 123–133.

    PubMed  CAS  Google Scholar 

  • Wachsstock, D. H., Wilkins, J. A., and Lin, S., 1987, Specific interaction of vinculin with a-actinin, Biochem. Biophys. Res. Commun. 146: 554–560.

    PubMed  CAS  Google Scholar 

  • Wallach, D., Davies, P. J. A., and Pastan, I., 1978, Purification of mammalian filamin. Similarity to high molecular weight actin-binding protein in macrophages, platelets, fibroblasts and other tissues, J. Biol. Chem. 253: 3328–3335.

    CAS  Google Scholar 

  • Wang, L.-L., and Bryan, J., 1981, Isolation of calcium-dependent platelet proteins that interact with actin, Cell 25: 637–649.

    PubMed  CAS  Google Scholar 

  • Warrick, H. M., and Spudich, J. A., 1987, Myosin structure and function in cell motility, Annu. Rev. Cell Biol. 3: 379–421.

    PubMed  CAS  Google Scholar 

  • Weeds, A. G., 1982, Actin-binding proteins—regulators of cell architecture and motility, Nature (London) 296: 811–816.

    CAS  Google Scholar 

  • Weihing, R. R., 1985, The filamins: Properties and functions, Can. J. Biochem. Cell Biol. 63: 397–413.

    PubMed  CAS  Google Scholar 

  • Werth, D. K., Niedel, J. E., and Pastan, I., 1983, Vinculin, a cytoskeletal substrate of protein kinase C, J. Biol. Chem. 258: 11423–11426.

    PubMed  CAS  Google Scholar 

  • Wheeler, M. E., Cox, A. C., and Carroll, R. C., 1984, Retention of the glycoprotein IIb-IIIa complex in the isolated platelet cytoskeleton. Effects of separable assembly of platelet pseudopodal and contractile cytoskeletons, J. Clin. Invest. 74: 1080–1089.

    PubMed  CAS  Google Scholar 

  • Wheeler, M. E., Gerrard, J. M., and Carroll, R. C., 1985, Reciprocal transmembrane receptor-cytoskeleton interactions in concanavalin A-activated platelets, J. Cell Biol. 101: 993–1000.

    PubMed  CAS  Google Scholar 

  • White, J. G., 1984, Arrangement of actin filaments in the cytoskeleton of human platelets, Am. J. Pathol. 117: 207–217.

    PubMed  CAS  Google Scholar 

  • White, J. G., I987a, An overview of platelet structural physiology, Scanning Microsc. 1: 1677–1700.

    Google Scholar 

  • White, J. G., 1987b, Views of the platelet cytoskeleton at rest and at work, Ann. N.Y. Acad. Sci. 509: 156–176.

    PubMed  CAS  Google Scholar 

  • White, J. G., and Sauk, J. J., 1984, Microtubule coils in spread blood platelets, Blood 64: 470–478.

    PubMed  CAS  Google Scholar 

  • White, J. G., Krumwiede, M., Burris, S. M., Heagan, B., 1986a, Isolation of microtubule coils from platelets after exposure to aggregating agents, Am. J. Pathol. 125: 319–326.

    PubMed  CAS  Google Scholar 

  • White, J. G., Radha, E., and Krumwiede, M., 1986b, Isolation of circumferential microtubules from platelets without simultaneous fixation, Blood 67: 873–877.

    PubMed  CAS  Google Scholar 

  • Wicki, A. N., and Clemetson, K. J., 1985, Structure and function of platelet membrane glycoproteins Ib and V. Effects of leukocyte elastase and other proteases on platelets response to von Willebrand factor and thrombin, Eur. J. Biochem. 153: 1–11.

    PubMed  CAS  Google Scholar 

  • Wilkins, J. A., and Lin, S., 1986, A re-examination of the interaction of vinculin with actin filaments in vitro, J. Cell Biol. 102: 1085–1092.

    PubMed  CAS  Google Scholar 

  • Yamashiro-Matsumura, S., and Matsumura, F. 1988, Characterization of 83-kilodalton nonmuscle caldesmon from cultured rat cells: Stimulation of actin binding of nonmuscle tropomyosin and periodic localization along microfilaments like tropomyosin, J. Cell Biol. 106: 1973–1983.

    PubMed  CAS  Google Scholar 

  • Yin, H. L., and Hartwig, J. H., 1988, The structure of the macrophage actin skeleton, J. Cell Sci. Suppl. 9: 169–184.

    PubMed  CAS  Google Scholar 

  • Yin, H. L., and Stossel, T. P., 1979, Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependant regulatory protein, Nature (London) 281: 583–586.

    CAS  Google Scholar 

  • Ylanne, J., Hormia, M., Jarvinen, M., Vartio, T., and Virtanen, I., 1988, Platelet glycoprotein IIb/IIIa complex in cultured cells. Localization in focal adhesion sites in spreading HEL cells, Blood 72: 1478–1486.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., Lawrence, J., and Stracher, A., 1988, Phosphorylation of platelet actin binding protein protects against proteolysis by calcium dependent sulfhydryl proteases, Biochem. Biophys. Res. Commun. 151: 355–360.

    PubMed  CAS  Google Scholar 

  • Zhuang, Q.-Q., Rosenberg, S., Lawrence, J., and Stracher, A., 1984, Role of actin binding protein phosphorylation in platelet cytoskeleton assembly, Biochem. Biophys. Res. Commun. 118: 508–513.

    PubMed  CAS  Google Scholar 

  • Zobel, C. R., 1988, The platelet cytoskeleton: Evidence for its structure from interactions with ZnC12, J Submicrosc. Cytol. Pathol. 20: 269–275.

    PubMed  CAS  Google Scholar 

  • Zobel, C. R., and Woods, A., 1983, Effect of calcium on the morphology of human platelets spread on glass substrates, Eur. J. Cell Biol. 30: 83–92.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilkinson, J.M. (1991). Immunological Studies of the Platelet Cytoskeleton. In: Harris, J.R. (eds) Megakaryocytes, Platelets, Macrophages, and Eosinophils. Blood Cell Biochemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9531-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9531-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9533-2

  • Online ISBN: 978-1-4757-9531-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics