Skip to main content

Spatial Resolution Enhancement through Time Gated Measurements

  • Chapter
Optical Imaging of Brain Function and Metabolism 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 413))

Abstract

Near infrared optical transillumination of tissue is emerging as a new tool in clinical diagnosis. Its advantages are noninvasiveness and portability and its wealth of light-tissue interaction mechanisms yielding information on physiological functions. The main chromophores in tissue in the wavelength range from 600 nm to 1000 nm are beside fat and water the oxygenated and deoxygenated form of hemoglobin, myoglobin and cytochrom, all of which are essential for the oxygen metabolism of living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chance, B., Nioka, S., Kent, J., McCully, K., Fountain, M., Greenfeld, R., and Holtom, G., 1988, Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle, Anal. Biochem. 174:69–707.

    Google Scholar 

  2. Chance, B., Leigh, J. S., Miyake, H., Smith, D. S., Nioka, S., Greenfeld, R., Finander, M., Kaufmann, K., Levy, W., Young, M, Cohen, P., Yoshioka H., and Boretsky, R., Comparison of time-resolved and-unresolved measurements of deoxyhemoglobin in the brain, 1988, Proc. Natl. Acad. Sci. U.S.A. 85:4971–4975.

    Article  ADS  Google Scholar 

  3. Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray S., and Wyatt, J., 1988, Estimation of optical path length through tissue from direct time-of-flight measurement, Phys. Med. Biol. 33:1422–1433.

    Article  Google Scholar 

  4. Duncan, M. D., Mahon, R., Tankersley L. L., and Reintjes, J., 1991, Time-gated imaging through scattering media using stimulated Raman amplification, Opt. Lett. 16:1868–1870.

    Google Scholar 

  5. Wang, L, Ho, P. P., Liu, C., Zhang G., and Alfano, R. R., 1991, Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate, Science 253:769–771.

    Article  ADS  Google Scholar 

  6. Chen, Y., 1994, Characterization of the image resolution for the first-arriving-light method, Appl. Opt. 33, 14:2544–2552.

    Article  Google Scholar 

  7. Yoo, K. M., Xing Q., and Alfano, R. R., 1991, Imaging objects hidden in highly scattering media using femtsosecond second-harmonic-generation cross-correlation time gating, Opt. Lett. 16, 13:1019–1021.

    Article  Google Scholar 

  8. Berg, R., Andersson-Engels, S., Jarlman O., and Svanberg, S., 1991, Tumor detection using time-resolved light transillumination’, in Future Trends in Biomedical Applications of Lasers, Proc. Soc. Photo-Opt. Instrum. Eng. 1525:59–67.

    Google Scholar 

  9. Andersson-Engels, S., Berg R., and Svanberg, S., 1990, time-resolved transillumination for medical diagnostics, Opt. Lett. 15:1179–1181.

    Article  ADS  Google Scholar 

  10. Benaron, D. A., Stevenson, D. K., 1993, Optical time-of-flight and absorbance imaging of biologic media, Science 259:1463–1466.

    Article  ADS  Google Scholar 

  11. Hebden J. C, and Kruger, R. A., Transillumination imaging performance: a time-of-flight imaging system, Med. Phys. 17:351–356.

    Google Scholar 

  12. Hebden, J. C., Kruger R. A., and Wong, K. S., 1991, Time resolved imaging throught a highly scattering medium, Appl. Opt. 30:788–794.

    ADS  Google Scholar 

  13. Hebden, J. C, Evaluating the spatial resolution performance of a time-resolved optic imaging system, Med. Phys. 19, 4:1081-1087.

    Google Scholar 

  14. Hebden, J. C., and Wong, K. S., 1993, Time-resolved optical tomography, Appl. Opt. 32, 4:372–380.

    Article  ADS  Google Scholar 

  15. Mitic, G., Kölzer, J., Otto, J., Plies, E., Sölkner, G., and Zinth, W., 1994, Time-gated transillumination of biological tissues and tissuelike phantoms, Appl. Opt. 33, 28:6699–6710.

    Article  Google Scholar 

  16. Schütz, O., Reinfelder, H.-E., Klingenbeck-Regn, K., Bartelt, H., 1994, Monte-Carlo modelling of time-resolved near-infrared transillumination of human breast tisse, SPIE 2082:123-129.

    Google Scholar 

  17. Heusmann, H., Kölzer, J., Puls, R., Otto, J., Heywang-Köbrunner, S., Zinth, W., Sölkner, G., 1995, Spectral transillumination of human breast tissue, Symp. on Biomedical Optics, San Jose (4-10.2.1995).

    Google Scholar 

  18. van der Zee, P., 1993, Measurements and modelling of the optical properties of human tissue in the near infrared, PhD thesis, Univ. College London.

    Google Scholar 

  19. Arridge, S. R., Cope, M., Delpy, D. T., 1992, The theoretical basis for the determination of optical path-lengths in tissue: temporal and frequency analysis, Phys. Med. Biol., 37:1531–1560.

    Article  Google Scholar 

  20. Zaccanti G., and Donelli, P, 1994, Attenuation of energy in time-gated transillumination imaging: numerical results, Appl. Opt. 33, 30:7023–7030.

    Article  Google Scholar 

  21. Gandjbakhche, A. H., Nossal R., and Bonner, R. F., 1994, Resolution limits for optical transillumination of abnormalities deeply embedded in tissues, Med. Phys. 21, 2:185–191.

    Google Scholar 

  22. Radiation Safety of Laser products, Equipment Classification Requirements and User’s Guide, International Electrotechnical Commission, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sölkner, G., Mitic, G. (1997). Spatial Resolution Enhancement through Time Gated Measurements. In: Villringer, A., Dirnagl, U. (eds) Optical Imaging of Brain Function and Metabolism 2. Advances in Experimental Medicine and Biology, vol 413. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0056-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0056-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0058-6

  • Online ISBN: 978-1-4899-0056-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics