Skip to main content

Neurochemical Roles of Copper as Antioxidant or Prooxidant

  • Chapter
Metals and Oxidative Damage in Neurological Disorders

Abstract

The biological reactivity of copper is the basis for both its essentiality and toxicity. Prior to the advent of modern medicine, drug design, and therapeutics, there is a long historical documentation of the use of copper salts in ointments for over 2000 years. The biological activity of copper was unknown at the time but was used for a wide variety of maladies including diseases of the skin, various infections, and recoveries from neurological disorders (Deuschle and Weser, 1985). Toxic properties of copper were also recognized as copper sulfate was used as a murder weapon and a suicidal agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allain, P., and Krari, N., 1991, Diethyldithiocarbamate, copper and neurological disorders, Life Sci. 48:291–299.

    Article  PubMed  CAS  Google Scholar 

  • Allen, K. G. D., Arthur, J. R., Morrice, P. C., Nicol, F., and Mills, C. F., 1988, Copper deficiency and tissue glutathione concentration in the rat, Proc. Soc. Exp. Biol. Med. 187:38–43.

    PubMed  CAS  Google Scholar 

  • Alt, E. R., Sternlieb, I., and Goldfischer, S., 1990, The cytopathology of metal overload, Int. Rev. Exp. Pathol. 31:165–188.

    PubMed  CAS  Google Scholar 

  • Anzil, A. P., Herrlinger, H., Blinzinger, K., and Heldrich, A., 1974, Ultrastructure of brain and nerve biopsy tissue in Wilson disease, Arch. Neurol. 31:94–100.

    Article  PubMed  CAS  Google Scholar 

  • Aust, S. D., Morehouse, L. A., and Thomas, C. E., 1985, Role of metals in oxygen radical reactions, J. Free Radicals Biol. Med. 1:3–25.

    Article  CAS  Google Scholar 

  • Barnea, A., Hartter, D. E., and Cho, G., 1989, High-affinity uptake of 67Cu into a veratridine-releasable pool in brain tissue, Am. J. Physiol. 257:C315-C322.

    Google Scholar 

  • Bradbury, A. F., and Smyth, D. G., 1991, Peptide amidation, Trends Biochem. Sci. 16:112–115.

    Article  PubMed  CAS  Google Scholar 

  • Bremner, I., and Beattie, J. H., 1990, Metallothionein and the trace minerals, Ann. Rev. Nutr. 10:63–83.

    Article  CAS  Google Scholar 

  • Chan, P. H., Chu, L., Chen, S. F., Carlson, E. J., and Epstein, C. J., 1990, Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase, Stroke 2:111–80–111–82.

    Google Scholar 

  • Ceballos-Picot, I., Nicole, A., Clément, M., Bourre, J.-M., and Sinet, P.-M., 1992, Age-related changes in antioxidant enzymes and lipid peroxidation in brains of control and transgenic mice overexpressing copper-zinc superoxide dismutase, Mut. Res. 275:281–293.

    Article  CAS  Google Scholar 

  • Connor, J. R., Tucker, P., Johnson, M., and Snyder, B., 1993, Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease, Neurosci. Lett. 159(1–2):88–90.

    Article  PubMed  CAS  Google Scholar 

  • Danks, D. M., Campbell, P. E., Stevens, B. J., Mayne, V., and Cartwright, E., 1972, Menkes’ kinky hair syndrome, Pediatrics 50:188–201.

    PubMed  CAS  Google Scholar 

  • Davis, G. K., and Mertz, W., 1987, Copper, in: Trace Elements in Human and Animal Nutrition, Volume 1 (W. Mertz, ed.), Academic Press, New York, pp. 301–364.

    Google Scholar 

  • Delmaestro, E., and Trombetta, L. D., 1995, The effects of disulfiram on the hippocampus and cerebellum of the rat brain: A study on oxidative stress, Toxicol. Lett. 75:235–243.

    Article  PubMed  CAS  Google Scholar 

  • Deuschle, U., and Weser, U., 1985, Copper and inflammation, in: Progress in Clinical Biochemistry and Medicine, Volume 2 (E. Baulieu, D. T. Forman, L. Jaenicke, J. A. Kellen, Y. Nagai, G. F. Springer, L. Träger, L. Will-Shahab, and J. L. Wittliff, eds.), Springer-Verlag, New York, pp. 97–130.

    Google Scholar 

  • Dexter, D. T, Carayon, A., Javoy-Agid, F., Agid, Y, Wells, F R., Daniel, S. E., Lees, A. J., Jenner, P., and Marsden, C. D., 1991, Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia, Brain 114:1953–1975.

    Article  PubMed  Google Scholar 

  • Donaldson, J., St-Pierre, T., Minnich, J., and Barbeau, A., 1971, Seizures in rats associated with divalent cation inhibition of Na+-K+-ATP’ase, Can. J. Biochem. 49:1217–1224.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty, J. J., and Hoekstra, W. G., 1982, Effects of vitamin E and selenium on copper-induced lipid peroxidation in vivo and on acute copper toxicity, Proc. Soc. Exp. Biol. Med. 169:201–208.

    PubMed  CAS  Google Scholar 

  • Eipper, B. A., and Mains, R. E., 1988, Peptide α-amidation, Ann. Rev. Physiol. 50:333–344.

    Article  CAS  Google Scholar 

  • Feller, D. J., and O’Dell, B. L., 1980, Dopamine and norepinephrine in discrete areas of the copper-deficient rat brain, J. Neurochem. 34:1259–1263.

    Article  PubMed  CAS  Google Scholar 

  • French, J. H., Sherard, E. S., Lubell, H., Brotz, M., and Moore, C. L., 1972, Trichopoliodystrophy. Report of a case and biochemical studies, Arch. Neurol. 26:229–244.

    Article  PubMed  CAS  Google Scholar 

  • Furuta, A., Price, D. L., Pardo, C. A., Troncoso, J. C., Xu, Z. S., Taniguchi, N., and Martin, L. J., 1995, Localization of superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus, Am. J. Pathol. 2:357–367.

    Google Scholar 

  • Gasull, T., Giralt, M., Hernandez, J., Martinez, P., Bremner, I., and Hidalgo, J., 1994, Regulation of metallothionein concentrations in rat brain: Effect of glucocorticoids, zinc, copper, and endotoxin, Am. J. Physiol. 266:E760-E767.

    Google Scholar 

  • Gutteridge, J. M. C., 1984, Copper-phenanthroline-induced site-specific oxygen-radical damage to DNA, Biochem. J. 218:983–985.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., 1992, Reactive oxygen species and the central nervous system, J. Neurochem. 59:1609–1623.

    Article  PubMed  CAS  Google Scholar 

  • Hesse, L., Beher, D., Masters, C. L., and Multhaup, G., 1994, The ßA4 amyloid precursor protein binding to copper, FEBS Lett. 349:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo, J., Garcia, A., Oliva, A. M., Giralt, M., Gasull, T, Gonzalez, B., Milnerowicz, H., Wood, A., and Bremner, I., 1994, Effect of zinc, copper and glucocorticoids on metallothionein levels of cultured neurons and astrocytes from rat brain, Chem. Biol. Interact. 93:197–219.

    Article  PubMed  Google Scholar 

  • Howell, J. McC, and Mercer, J. F. B., 1994, The pathology and trace element status of the toxic milk mutant mouse, J. Comp. Pathol. 110:37–47.

    Article  PubMed  CAS  Google Scholar 

  • Howell, J. McC, Blakemore, W. F, Gopinath, C., Hall, G. A., and Parker, J. H., 1974, Chronic copper poisoning and changes in the central nervous system of sheep, Acta Neuropath. 29:9–24.

    Article  PubMed  CAS  Google Scholar 

  • Ishino, H., Mii, T, Hayashi, Y., Saito, A., and Otsuki, S., 1972, A case of Wilson’s disease with enormous cavity formation of cerebral white matter, Neurology 22:905–909.

    Article  PubMed  CAS  Google Scholar 

  • Janes, S. M., Mu, D., Wemmer, D., Smith, A. J., Kaur, S., Maltby, D., Burlingame, A. L., and Klinman, J. P., 1990, A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase, Science 248:981–987.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M. A., Fischer, J. G., and Kays, S. E., 1992, Is copper an antioxidant nutrient?, Crit. Rev. Food Sci. Nutr. 32:1–31.

    Article  PubMed  CAS  Google Scholar 

  • Kaler, S. G., Goldstein, D. S., Holmes, C., Salerno, J. A., and Gahl, W A., 1993, Plasma and cerebrospinal fluid neurochemical pattern in Menkes disease, Ann. Neurol. 33:171–175.

    Article  PubMed  CAS  Google Scholar 

  • Kodama, H., Okabe, I., Yanagisawa, M., Nomiyama, H., Nomiyama, K., Nose, O., and Kamoshita, S., 1988, Does CSF copper level in Wilson disease reflect copper accumulation in the brain?, Pediatr. Neurol. 4:35–37.

    Article  PubMed  CAS  Google Scholar 

  • Komoly, S., Hudson, L. D., Webster, H.DeF, and Bondy, C. A., 1992, Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination, Proc. Natl. Acad. Sci. USA 89:1894–1898.

    Article  PubMed  CAS  Google Scholar 

  • Kubat, W. D., and Prohaska, J. R., 1996, Copper status and ascorbic acid concentrations in rats, Nutr. Res. 16:237–243.

    Article  CAS  Google Scholar 

  • Lawrence, R. A., and Jenkinson, S. G., 1987, Effects of copper deficiency on carbon tetrachloride-induced lipid peroxidation, J. Lab. Clin. Med. 109:134–140.

    PubMed  CAS  Google Scholar 

  • Levenson, C. W., and Janghorbani, M., 1994, Long-term measurement of organ copper turnover in rats by continuous feeding of a stable isotope, Anal. Biochem. 221:243–249.

    Article  PubMed  CAS  Google Scholar 

  • Lew, R. A., Clarke, I. J., and Smith, A. I., 1992, Distribution and characterization of peptidylglycine α-amidating monooxygenase activity in the ovine brain and hypothalamo-pituitary axis, Endocrinology 130:994–1000.

    Article  PubMed  CAS  Google Scholar 

  • Liao, Z., Medeiros, D. M., McCune, S. A., and Prochaska, L. J., 1995, Cardiac levels of fibronectin, laminin, isomyosins, and cytochrome c oxidase on weanling rats are more vulnerable to copper deficiency than those of postweanling rats, J. Nutr. Biochem. 6:385–391.

    Article  PubMed  CAS  Google Scholar 

  • Linder, M. C., 1991, Biochemistry of Copper, Plenum Press, New York.

    Google Scholar 

  • Under, M. C., and Moor, J. R., 1977, Plasma ceruloplasmin: Evidence for its presence in and uptake by heart and other organs of the rat, Biochim. Biophys. Acta 499:329–336.

    Article  Google Scholar 

  • Loeffler, D. A., DeMaggio, A. J., Juneau, P. L., Brickman, C. M., Mashour, G. A., Finkelman, J. H., Pomara, N., and LeWitt, P. A., 1994, Ceruloplasmin is increased in cerebrospinal fluid in Alzheimer’s disease but not Parkinson’s disease, Alzheimer Disease and Associated Disorders 8:190–197.

    Article  PubMed  CAS  Google Scholar 

  • Mains, R. E., Myers, A. C., and Eipper, B. A., 1985, Hormonal, drug, and dietary factors affecting peptidyl glycine α-amidating monooxygenase activity in various tissues of the adult male rat, Endocrinology 116:2505–2515.

    Article  PubMed  CAS  Google Scholar 

  • Marklund, S. L., 1990, Expression of extracellular superoxide dismutase by human cell lines, Biochem. J. 266:213–219.

    PubMed  CAS  Google Scholar 

  • Miller, D. S., and O’Dell, B. L., 1987, Milk and casein-based diets for the study of brain catecholamines in copper-deficient rats, J. Nutr. 117:1890–1897.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Farris, D. B., and Graham, D. G., 1995, Covalent crosslinking of neurofilament proteins by oxidized catechols as a potential mechanism of Lewy body formation, J. Neuropathol. Exp. Neurol. 54:311–319.

    Article  PubMed  CAS  Google Scholar 

  • Morita, A., Kimura, M., and Itokawa, Y., 1994a, Changes with age in the mineral status in brain of female SAMPI and SAMR1, in: The SAM Model of Senescence (T. Takeda, ed.), Elsevier Science, New York, pp. 317–320.

    Google Scholar 

  • Morita, A., Kimura, M., and Itokawa, Y, 1994b, The effect of aging on the mineral status of female mice, Biol. Trace Elem. Res. 42:165–177.

    Article  PubMed  CAS  Google Scholar 

  • Morita, H., Ikeda, S., Yamamoto, K., Morita, S., Yoshida, K., Nomoto, S., Kato, M., and Yanagisawa, N., 1995, Hereditary ceruloplasmin deficiency with hemosiderosis: A clinicopathological study of a Japanese family, Ann. Neurol. 37:646–656.

    Article  PubMed  CAS  Google Scholar 

  • O’Dell, B. L., and Prohaska, J. R., 1983, Biochemical aspects of copper deficiency in the nervous system, in: Neurobiology of the Trace Elements, Volume 1 (I. E. Dreosti, and R. M. Smith, eds.), Humana Press, Clifton, New Jersey, pp. 41–81.

    Google Scholar 

  • Ohtsuki, T., Matsumoto, M., Suzuki, K., Taniguchi, N., and Kamada, T., 1993, Effect of transient forebrain ischemia on superoxide dismutases in gerbil hippocampus, Brain Res. 620:305–309.

    Article  PubMed  CAS  Google Scholar 

  • Oury, T. D., Ho, Y.-S., Piantadosi, C. A., and Crapo, J. D., 1992, Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity, Proc. Natl. Acad. Sci. USA 89:9715–9719.

    Article  PubMed  CAS  Google Scholar 

  • Owen, Jr. C. A., 1981, Copper Deficiency and Toxicity, Noyes Publications, Park Ridge, New Jersey.

    Google Scholar 

  • Owen, Jr. C. A., Dickson, E. R., Goldstein, N. P., Baggenstoss, A. H., and McCall, J. T., 1977, Hepatic subcellular distribution of copper in primary biliary cirrhosis, Mayo Clin. Proc. 52:73–80.

    PubMed  CAS  Google Scholar 

  • Pletcher, J. M., and Banting, L. F., 1983, Copper deficiency in piglets characterized by spongy myelopathy and degenerative lesions in the great blood vessels, J. South Afr. Vet. Assoc. 54:43–46.

    CAS  Google Scholar 

  • Powell, S. R., and Wapnir, R. A., 1994, Adventitious redox-active metals in Krebs-Henseleit buffer can contribute to Langendorff heart experimental results, J. Mol. Cell. Cardiol. 26:769–778.

    Article  PubMed  CAS  Google Scholar 

  • Prohaska, J. R., 1987, Functions of trace elements in brain metabolism, Physiol. Rev. 67:858–901.

    PubMed  CAS  Google Scholar 

  • Prohaska, J. R., 1988, Biochemical functions of copper in animals, in: Essential and Toxic Trace Elements in Human Health and Disease (A. S. Prasad, ed.), Alan R. Liss, New York, pp. 105–124.

    Google Scholar 

  • Prohaska, J. R., 1990, Biochemical changes in copper deficiency, J. Nutr. Biochem. 1:452–461.

    Article  PubMed  CAS  Google Scholar 

  • Prohaska, J. R., and Bailey, W. R., 1993a, Copper deficiency during neonatal development alters mouse brain catecholamine levels, Nutr. Res. 13:331–338.

    Article  CAS  Google Scholar 

  • Prohaska, J. R., and Bailey, W. R., 1993b, Persistent regional changes in brain copper, cuproenzymes and catecholamines following perinatal copper deficiency in mice, J. Nutr. 123:1226–1234.

    PubMed  CAS  Google Scholar 

  • Prohaska, J. R., and Bailey, W. R., 1994, Regional specificity in alterations of rat brain copper and catecholamines following perinatal copper deficiency, J. Neurochem. 63:1551–1557.

    Article  PubMed  CAS  Google Scholar 

  • Prohaska, J. R., and Bailey, W. R., 1995a, Persistent neurochemical changes following perinatal copper deficiency in rats, J. Nutr. Biochem. 6:275–280.

    Article  CAS  Google Scholar 

  • Prohaska, J. R., and Bailey, W. R., 1995b, Alterations of rat brain peptidylglycine α-amidating mono-oxygenase and other cuproenzyme activities following perinatal copper deficiency, Proc. Soc. Exp. Biol. Med. 210:107–116.

    PubMed  CAS  Google Scholar 

  • Prohaska, J. R., and Cox, D. A., 1983, Decreased brain ascorbate levels in copper-deficient mice and in brindled mice, J. Nutr. 113:2623–2629.

    PubMed  CAS  Google Scholar 

  • Prohaska, J. R., and Smith, T. L., 1982, Effect of dietary or genetic copper deficiency on brain catecholamines, trace metals and enzymes in mice and rats, J. Nutr. 112:1706–1717.

    PubMed  CAS  Google Scholar 

  • Prohaska, J. R., and Wells, W. W., 1974, Copper deficiency in the developing rat brain: A possible model for Menkes’ steely-hair disease, J. Neurochem. 23:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Prohaska, J. R., and Wells, W. W., 1975, Copper deficiency in the developing rat brain: Evidence for abnormal mitochondria, J. Neurochem. 25:221–228.

    Article  PubMed  CAS  Google Scholar 

  • Prohaska, J. R., Bailey, W. R., and Lear, P. M., 1995, Copper deficiency alters rat peptidylglycine α-amidating monooxygenase activity, J. Nutr. 125:1447–1454.

    PubMed  CAS  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V., Kostic, V., Carlson, E., Epstein, C. J., and Cadet, J. L., 1992, Superoxide dismutase, catalase, and glutathione peroxidase activities in copper/zinc-superoxide dismutase transgenic mice, J. Neurochem. 58:1760–1767.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J. P., Deng, H.-X., Rahmani, Z., Krizus, A., McKenna-Yasek, D., Cayabyab, A., Gaston, S. M., Berger, R., Tanzi, R. E., Halperin, J. J., Herzfeldt, B., Van den Bergh, R., Hung, W.-Y., Bird, T., Deng, G., Mulder, D. W, Smyth, C., Laing, N. G., Soriano, E., Pericak-Vance, M. A., Haines, J., Rouleau, G. A., Gusella, J. S., Horvitz, H. R., and Brown, Jr., R. H., 1993, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362:59–62.

    Article  PubMed  CAS  Google Scholar 

  • Rowley, D. A., and Halliwell, B., 1983, Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: A physiologically significant reaction? Arch. Biochem. Biophys. 225(1):279–284.

    Article  PubMed  CAS  Google Scholar 

  • Saari, J. T., Dickerson, F. D., and Habib, M. P., 1990, Ethane production in copper-deficient rats, Proc. Soc. Exp. Biol. Med. 195:30–33.

    PubMed  CAS  Google Scholar 

  • Sato, M., Sugiyama, T., Daimon, T., and Iijima, K., 1994, Histochemical evidence for abnormal copper distribution in the central nervous system of LEC mutant rat, Neurosci. Lett. 17:97–100.

    Article  Google Scholar 

  • Schafer, M. K.-H., Stoffers, D. A., Eipper, B. A., and Watson, S. J., 1992, Expression of peptidylglycine α-amidating monooxygenase (EC 1.14.17.3) in the rat central nervous system, J. Neurosci. 12:222–234.

    PubMed  CAS  Google Scholar 

  • Simpson, J. A., Cheeseman, K. H., Smith, S. E., and Dean, R. T., 1988, Free-radical generation by copper ions and hydrogen peroxide, Biochem. J. 254:519–523.

    PubMed  CAS  Google Scholar 

  • Sokol, R. J., Devereaux, M., Mierau, G. W., Hambidge, K. M., and Shikes, R. H., 1990, Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload, Gastroenterology 99:1061–1071.

    PubMed  CAS  Google Scholar 

  • Sokol, R. J., Twedt, D., McKim, Jr., J. M., Devereaux, M. W, Karrer, F. M., Kam, I., von Steigman, G., Narkewicz, M. R., Bacon, B. R., Britton, R. S., and Neuschwander-Tetri, B. A., 1994, Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis, Gastroenterology 107:1788–1798.

    PubMed  CAS  Google Scholar 

  • Sparaco, M., Hirano, A., Hirano, M., DiMauro, S., and Bonilla, E., 1993, Cytochrome c oxidase deficiency and neuronal involvement in Menkes’ kinky hair disease: Immunohistochemical study, Brain Pathol. 3:349–354.

    Article  PubMed  CAS  Google Scholar 

  • Su, L.-C, Ravanshad, S., Owen, Jr., C. A., McCall, J. T., Zollman, P. E., and Hardy, R. M., 1982, A comparison of copper-loading disease in Bedlington terriers and Wilson’s disease in humans, Am. J. Physiol. 243:G226-G230.

    Google Scholar 

  • Sugawara, N., Ikeda, T., Sugawara, C., Kohgo, Y., Kato, J., and Takeichi, N., 1992, Regional distribution of copper, zinc and iron in the brain in Long-Evans Cinnamon (LEC) rats with a new mutation causing hereditary hepatitis, Brain Res. 588:287–290.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S. H.-H., and O’Dell, B. L., 1992a, Low copper status of rats affects polyunsaturated fatty acid composition of brain phospholipids, unrelated to neuropathology, J. Nutr. 122:65–73.

    PubMed  CAS  Google Scholar 

  • Sun, S. H.-H., and O’Dell, B. L., 1992b, Elevated striatal levels of glial fibrillary acidic protein associated with neuropathology in copper-deficient rats, J. Nutr. Biochem. 3:503–509.

    Article  CAS  Google Scholar 

  • Tanaka, H., Kasama, T., Inomata, K., and Nasu, F, 1990, Abnormal movements in brindled mutant mouse heterozygotes: As related to the development of their offspring—biochemical and morphological studies, Brain Dev. 12:284–292.

    Article  PubMed  CAS  Google Scholar 

  • Tanzi, R. E., Petrukhin, K., Chernov, L, Pellequer, J. L., Wasco, W., Ross, B., Romano, D. M., Parano, E., Pavone, L., Brzustowicz, L. M., Devoto, M., Peppercorn, J., Bush, A. I., Sternlieb, I., Pirastu, M., Gusella, J. F., Evgrafov, O., Penchaszadeh, G. K., Honig, B., Edelman, I. S., Soares, M. B., Scheinberg, I. H., and Gilliam, T. C., 1993, The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene, Nature Genet. 5:344–350.

    Article  PubMed  CAS  Google Scholar 

  • Traystman, R. J., Kirsch, J. R., and Koehler, R. C., 1991, Oxygen radical mechanisms of brain injury following ischemia and reperfusion, J. Appl. Physiol. 71:1185–1195.

    PubMed  CAS  Google Scholar 

  • Uchida, Y., Takio, K., Titani, K., Ihara, Y., and Tomonaga, M., 1991, The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein, Neuron 7:331–341.

    Article  Google Scholar 

  • Walshe, J. M., and Gibbs, K. R., 1987, Brain copper in Wilson’s disease, Lancet (II): 1030.

    Article  Google Scholar 

  • Yamaguchi, Y, Heiny, M. E., Shimizu, N., Aoki, T., and Gitlin, J. D., 1994, Expression of the Wilson disease gene is deficient in the Long-Evans Cinnamon rat, Biochem. J. 301:1–4.

    PubMed  CAS  Google Scholar 

  • Yamamoto, F., Kasai, H., Togashi, Y, Takeichi, N., Hori, T., and Nishimura, S., 1993, Elevated level of 8-hydroxydeoxyguanosine in DNA of liver, kidneys, and brain of Long-Evans Cinnamon rats, Jpn. J. Cancer Res. 84(5):508–511.

    Article  PubMed  CAS  Google Scholar 

  • Yang, G., Chan, P. H., Chen, J., Carlson, E., Chen, S. F., Weinstein, P., Epstein, C. J., and Kamii, H., 1994, Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia, Stroke 25:165–170.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prohaska, J.R. (1997). Neurochemical Roles of Copper as Antioxidant or Prooxidant. In: Connor, J.R. (eds) Metals and Oxidative Damage in Neurological Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0197-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0197-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0199-6

  • Online ISBN: 978-1-4899-0197-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics