Skip to main content

Bacterioplankton Roles in Cycling of Organic Matter: The Microbial Food Web

  • Chapter
Primary Productivity and Biogeochemical Cycles in the Sea

Part of the book series: Environmental Science Research ((ESRH,volume 43))

Abstract

More than a decade has passed since the realization that bacteria are quantitatively important consumers of organic carbon in marine food webs. The basic information on the significance of the microbial food web was put forth eloquently by Pomeroy (1974), who pieced together data from a variety of sources that all indicated a major role of small heterotrophs consuming dissolved and particulate material. However, these ideas did not gain wide recognition until the high abundance of marine bacteria was shown by epifluorescence microscopy (Ferguson and Rublee, 1976; Hobbie et al., 1977), and the bacterial heterotrophic production was shown to be large (i.e., 10–30%) compared to primary production (Hagstrőm et al., 1979; Fuhrman and Azam, 1980; 1982). With reasonable estimates of bacterial growth efficiency (i.e., near 50%), it became clear that heterotrophic bacteria consume an amount of carbon equivalent to approximately 20–60% of total primary production. Williams (1981) reached this conclusion when he synthesized the extant results on bacterial biomass and production. He also showed that “normal” well-known processes and mechanisms could lead to as much as 60% of the primary production becoming dissolved organic carbon (DOC), and subsequently, being taken up by bacteria. Azam et al. (1983) formalized the concept of the microbial loop by which significant quantities of organic matter are produced or processed through prokaryotic and very small eukaryotic organisms, eventually feeding into the larger macrozooplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, H.-W., and Dubow, M. S., 1987, “Viruses of Prokaryotes. Vol. 1. General Properties of Bacteriophages,” CRC Press, Boca Raton.

    Google Scholar 

  • Alldredge, A. L., and Cohen, Y., 1987, Can microscale patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science, 235:689.

    PubMed  CAS  Google Scholar 

  • Altabet, M.A., 1990, Organic C, N, and stable isotopic composition of particulate matter collected on glass-fiber and aluminum oxide filters, Limnol. Oceanogr., 35:902.

    CAS  Google Scholar 

  • Azam, F., Fenchel, T., Gray, J. G., Meyer-Reil, L. A., and Thingstad, T., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10:257.

    Google Scholar 

  • Azam, F., and Ammerman, J. W., 1984a, Cycling of organic matter by bacterioplankton in pelagic marine ecosystems, in: “Microenvironmental Considerations, Flows of Energy and Materials in Marine Ecosystems,” M. J. R. Fasham, ed., Plenum Publishing Company, New York.

    Google Scholar 

  • Azam, F., and Ammerman, J. W., 1984b, Mechanisms of organic matter utilization by marine bacterioplankton, Lecture notes on coastal and estuarine studies, in: “Marine Phytoplankton and Productivity,” O. Holm-Hansen, L. Bolis, and R. Gilles, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Azam, F., and Cho, B. C., 1987, Bacterial utilization of organic matter in the sea, SGM 41, Ecology of Microbial Communities, Cambridge Univ. Press.

    Google Scholar 

  • Azam, F., and Hodson, R. E., 1981, Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria, Mar. Ecol. Prog. Ser., 6:213.

    CAS  Google Scholar 

  • Bacastow, R., and Maier-Reimer, E., 1991, Dissolved organic carbon in modeling oceanic new production, Global Biogeochem. Cycles., 5:71.

    CAS  Google Scholar 

  • Banse, K., 1974, On the role of bacterioplankton in the tropical ocean, Mar. Biol., 24:1.

    Google Scholar 

  • Bergh, O., Borsheim, K. Y., Bratbak, G., and Heldal, M., 1989, High abundance of viruses found in aquatic environments, Nature., 340:467.

    PubMed  CAS  Google Scholar 

  • Bird, D. F., and Kalff, J., 1984, Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters, Can. J. Fish. Aquat. Sci., 41:1015.

    Google Scholar 

  • Bjørnsen, T. K., 1986, Automatic determination of bacterioplankton biomass by image analysis, Appl. Environ. Microbiol., 51:1199.

    PubMed  Google Scholar 

  • Bjørnsen, P. K., 1986, Bacterioplankton growth yield in continuous seawater cultures, Mar. Ecol. Prog. Ser., 30:191.

    Google Scholar 

  • Bjørnsen, P. K., 1988, Phytoplankton exudation of organic matter: Why Do Healthy Cells Do It?, Limnol. Oceanogr., 33:151.

    Google Scholar 

  • Bjørnsen, P. K., and Kuparinen, J., 1991, Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean, Mar. Ecol. Prog. Ser., 71:185.

    Google Scholar 

  • Børsheim, K. Y., Bratbak, G., and Heldal, M., 1990, Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy, Appl. Environ. Microbiol., 56:352.

    PubMed  Google Scholar 

  • Bratbak, G., 1985, Bacterial biovolume and biomass estimations, Appl. Environ, Microbiol., 49:1488.

    CAS  Google Scholar 

  • Bratbak, G., and Thingstad, T.F., 1985, Phytoplankton-bacteria interactions: An apparent paradox?, Analysis of a model ecosystem with both competition and commensalism, Mar. Ecol Prog. Ser., 25:23.

    Google Scholar 

  • Bratbak, G., Heldal, M., Norland, S., and Thingstad, T.F., 1990, Viruses as partners in spring bloom microbiol trophodynamics, Appl. Environ. Microbiol., 56:1400.

    PubMed  CAS  Google Scholar 

  • Britschgi, T., and Giovannoni, S. J., 1991, Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing, Appl. Environ. Microbiol., 57:1707.

    PubMed  CAS  Google Scholar 

  • Bruland, K., 1983, Trace elements in seawater, in: “Chemical Oceanography,” J. P. Riley, and R. Chester, eds., Academic Press, New York.

    Google Scholar 

  • Chin-Leo, G., and Kirchman, D. L., 1988, Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine, Appl. Environ. Microbiol., 54:1934.

    PubMed  CAS  Google Scholar 

  • Cho, B. C., and Azam, F., 1988, Major role of bacteria in biochemical fluxes in the ocean’s interior, Nature, 332:441.

    CAS  Google Scholar 

  • Cho, B., and Azam. F., 1990, Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone, Mar. Ecol. Prog. Ser., 63:253.

    CAS  Google Scholar 

  • Cole, J. J., 1982, Interactions between bacteria and algae in aquatic ecosystems, Ann. Rev. Ecol. Syst., 13:291.

    Google Scholar 

  • Cole, J. J., Findlay, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: A cross-system overview, Mar. Ecol. Prog. Ser., 43:1.

    Google Scholar 

  • Copping, A. E., and Lorenzen, C. J., 1980, Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as tracer, Limnol. Oceanogr., 25:873.

    Google Scholar 

  • Currie, D. J., and Kalff, J., 1984, The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater, Limnol. Oceanogr., 29:311.

    CAS  Google Scholar 

  • DeLong, E. F., Wickham, G. S., and Pace, N. R., 1990, Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells, Science, 243:1360.

    Google Scholar 

  • Dortch, Q., and Packard, T., 1989, Differences in biomass structure between oligotrophic and eutrophic marine ecosystems, Deep Sea Res., 36:223.

    CAS  Google Scholar 

  • Druffel, E. R. M., Williams, P. M., and Suzuki, Y., 1989, Concentrations and radiocarbon signatures of dissolved organic matter in the Pacific Ocean, 16:991.

    CAS  Google Scholar 

  • Ducklow, H. W., 1991, The passage of carbon through microbial foodwebs: Results from flow network models, Mar. Microb. Food Webs., 5:129.

    Google Scholar 

  • Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated form of nitrogen in primary production, Limnol. Oceanogr., 12:196.

    CAS  Google Scholar 

  • Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.

    Google Scholar 

  • Eppley, R. W., Horrigan, S. G., Fuhrman, J. A., Brooks, E. R., Price, C. C., and Sellner, K., 1981, Origins of dissolved organic matter in Southern California coastal waters: Experiments on the role of Zooplankton, Mar. Ecol. Prog. Ser., 6:149.

    Google Scholar 

  • Ferguson, R. L., and Rublee, P., 1976, Contribution of bacteria to standing crop of coastal plankton, Limnol. Oceanogr., 21:141.

    Google Scholar 

  • Ferguson, R. L., Buckley, E. N., and Palumbo, A. V., 1984, Response of marine bacterioplankton to differential filtration and confinement, Appl. Environ. Microbiol., 47:49.

    PubMed  CAS  Google Scholar 

  • Flynn, K.J., and Butler, I., 1986, Nitrogen sources for the growth of marine microalgae: role of dissolved free amino acids, Mar. Ecol. Prog. Ser., 34:281.

    CAS  Google Scholar 

  • Frost, B. W., 1984, Utilization of phytoplankton production in the surface layer, in: “Global Ocean Flux Study Workshop, US National Research Council.”.

    Google Scholar 

  • Fuhrman, J. A., 1987, Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach, Mar. Ecol. Prog. Ser., 37:45.

    CAS  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, AppL Environ. Microbiol., 39:1085.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results, Mar. Biol., 66:109.

    Google Scholar 

  • Fuhrman, J. A., Horrigan, S. G., and Capone, D. G., 1988, The use of 13N as tracer for bacterial and algal uptake of ammonium from seawater, Mar. Ecol. Prog. Ser., 45:271.

    CAS  Google Scholar 

  • Fuhrman, J. A., Sleeter, T. D., Carlson, C. A., and Proctor, L. M., 1989, Dominance of bacterial biomass in the Sargasso Sea and its ecological implications, Mar. Ecol. Prog. Ser., 57:207.

    Google Scholar 

  • Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., and Field, K. G., 1990, Genetic diversity in Sargasso Sea bacterioplankton, Nature, 345:60.

    PubMed  CAS  Google Scholar 

  • Glibert, P. M., 1982, Regional studies of daily, seasonal, and size fractionation variability in ammonium regeneration, Mar. Biol., 70:209.

    CAS  Google Scholar 

  • Goldman, J. C., Caron. D. A., and Dennett, M. R., 1987, Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio, Limnol. Oceanogr., 32:1239.

    CAS  Google Scholar 

  • Hagstrőm, Å., Larsson, U., Horstedt, P., and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. Environ. Microbiol., 37:805.

    PubMed  Google Scholar 

  • Hagstrőm, Å., Azam, F., Andersson, A., Wikner, J., and Rassoulzadegan, F., 1988, Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes, Mar. Ecol. Prog. Ser., 49:171.

    Google Scholar 

  • Harrison, W. G., Azam, F., Renger, E. H., and Eppley, R. W., 1977, Some experiments on phosphate assimilation by coastal marine phytoplankton, Mar. Biol., 40:9.

    CAS  Google Scholar 

  • Hobbie, J. E., Daley, R. J., and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33:1225.

    PubMed  CAS  Google Scholar 

  • Horrigan, S. G., Hagström, A., Koike, I., and Azam, F., 1988, Inorganic nitrogen utilization by assemblages of marine bacteria in seawater culture, Mar. Ecol. Prog. Ser., 50:147.

    CAS  Google Scholar 

  • Hutchinson, G. E., 1961, The paradox of the plankton, Amer. Nat., 45:137.

    Google Scholar 

  • Jackson, G., 1988, Implications of high dissolved organic matter concentrations for oceanic properties and processes, Oceanography, 1:28.

    Google Scholar 

  • Jackson, G. A., 1989, Simulation of bacterial attraction and adhesion to falling particles in an aquatic environment, Limnol. Oceanogr., 34:514.

    CAS  Google Scholar 

  • Jackson, G. A., and Williams, P. M., 1985, Importance of dissolved organic nitrogen and phosphorus to biological nutrient cycling, Deep Sea Res., 32:223.

    CAS  Google Scholar 

  • Jannasch, H. W., and Jones, G. E., 1959, Bacterial populations in sea water as determined by different methods of enumeration, Limnol. Oceanogr., 4:128.

    Google Scholar 

  • Jumars, P. A., Penry, D. L., Baross, J. A., Perry, M. J., and Frost, B. W., 1989, Closing the microbial loop: Dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion, and absorption in animals, Deep Sea Res., 36:483.

    CAS  Google Scholar 

  • Karl, D. M., Knauer, G. A., and Martin, J. H., 1988, Downward flux of particulate organic matter in the ocean: A particle decomposition paradox, Nature, 332:438.

    Google Scholar 

  • Kieber, D. J., McDaniel, J. A., and Mopper, K., 1989, Photochemical source of biological substrates in seawater: Implications for carbon cycling, Nature, 341:637.

    CAS  Google Scholar 

  • Kirchman, D. L., 1990, Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific, Mar. Ecol. Prog. Ser., 62:47.

    CAS  Google Scholar 

  • Kirchman, D. L., Keil, R. G., and Wheeler, P. A., 1989, The effect of amino acids on ammonium utilization and regeneration by heterotrophic bacteria in the subarctic Pacific, Deep Sea Res., 36:1763.

    CAS  Google Scholar 

  • Kirchman, D. L., Keil, R. G., and Wheeler, P. A., 1990, Carbon limitation of ammonium uptake by heterotrophic bacteria in the subarctic Pacific, Limnol. Oceanogr, 35:1258.

    CAS  Google Scholar 

  • Kirchman, D. L., K’Nees, E., and Hodson, R. E., 1985, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems, Appl. Environ. Microbiol., 49:599.

    PubMed  CAS  Google Scholar 

  • Lampert, W., 1978, Release of dissolved organic carbon by grazing Zooplankton, Limnol. Oceanogr., 23:831.

    CAS  Google Scholar 

  • Laws, E. A., Redalje, D. G., Haas, L. W., Bienfang, P. K., Eppley, R. W., Harrison, W. G., Karl, D. M., and Marra, J., 1984, High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters, Limnol. Oceanogr., 29:1161.

    CAS  Google Scholar 

  • Lee, S., and Fuhrman, J. A., 1987, Relatioships between biovolume and biomass of naturally derived marine bacterioplankton, Appl. Environ. Microbiol., 53:1298.

    PubMed  CAS  Google Scholar 

  • Lee, S., and Fuhrman, J. A., 1990, DNA hybridization to compare species compositions of natural bacterioplankton assemblages, Appl. Environ. Microbiol., 56:739.

    PubMed  CAS  Google Scholar 

  • Lee, S., and Fuhrman, J. A., Spatial and temporal variation of natural bacterioplankton assemblages studied by total genomic DNA cross-hybridization, Limnol. Oceanogr., in press.

    Google Scholar 

  • Lenski, R. E., 1988, Dynamics of interactions between bacteria and virulent bacteriophage, Adv. Microb. Ecol., 10:1.

    CAS  Google Scholar 

  • Li, W. K. W., Dickie, P. M., Irwin, B. D., and Wood, A. M., Biomass of bacteria, cyanobacteria, prochlorophytes, and photosynthetic eukaryotes in the Sargasso Sea, Deep Sea Res., in press.

    Google Scholar 

  • Linley, E. A. S., Newell, R. C., and Lucas, M. I., 1983, Quantitative relationships between phytoplankton, bacteria, and heterotrophic microflagellates in shelf waters, Mar. Ecol. Prog. Ser., 12.

    Google Scholar 

  • Martin, J. H., and Fitzwater, S. E., 1988, Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic, Nature, 331:341.

    CAS  Google Scholar 

  • McManus, G. B., 1991, Flow analysis of a planktonic microbial food web model, Mar. Microb. Food Webs., 5:145.

    Google Scholar 

  • McManus, G. B., and Fuhrman, J. A., 1988, Control of marine bacterioplankton populations: Measurement and significance of grazing, Hydrobiologia, 159:51.

    Google Scholar 

  • Mitchell, J. G., and Fuhrman, J. A., 1989, Centimeter scale vertical heterogeneity in bacteria and chlorophyll a, Mar. Ecol. Prog. Ser., 54:141.

    Google Scholar 

  • Mitchell, J. G., Okubo, A., and Fuhrman, J. A., 1985, Microzones form the basis for a stratified microbial ecosystem, Nature, (316): 58.

    Google Scholar 

  • Murphy, T. P., Lean, D. R. S., and Nalewajko, C., 1976, Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae, Science, 192:900.

    PubMed  CAS  Google Scholar 

  • Olson, R. J., Chisholm, S. W., Zettler, E. R., Altabet, M. A., and Dusenberry, J. A., 1990, Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean, Deep Sea Res., 37:1033.

    Google Scholar 

  • Pace, N. R., Stahl, D. A., Lane, D. L., and Olsen, G. J., 1986, The analysis of natural microbial populations by rRNA sequences, Adv. Microbiol. Ecol., 9:1.

    CAS  Google Scholar 

  • Paul, J. H., and Carlson, D. J., 1984, Genetic material in the marine environment: implication for bacterial DNA, Limnol. Oceangr., 29:1091.

    CAS  Google Scholar 

  • Pomeroy, L. R., 1974, The ocean’s food web, a changing paradigm, Bioscience, 24:499.

    Google Scholar 

  • Proctor, L. M., and Fuhrman, J. A., 1990, Viral mortality of marine bacteria and cyanobacteria, Nature, 343:60.

    Google Scholar 

  • Proctor, L. M., and Fuhrman, J. A., 1991, Roles of viral infection in organic particle flux, Mar. Ecol. Prog. Ser., 69:133.

    Google Scholar 

  • Proctor, L. M., Fuhrman, J. A., and Ledbetter, M. C., 1988, Marine bacteriophages and bacterial mortality, EOS Trans. Am. Geophys. Union., 69:1111.

    Google Scholar 

  • Roman, M. R., Ducldow, H. W., Fuhrman, J. A., Garcide, C., Glibert, P. M., Malone, T. C., and McManus, G. B., 1988, Production, consumption and nutrient cycling in a laboratory mesocosm, Mar. Ecol. Prog. Ser., 42:39.

    Google Scholar 

  • Roy, S., Harris, R. P., and Poulet, S. A., 1989, Inefficient feeding by Calanus helgolandicus and Temora lingicornis on Coscinodiscus wailesii: quantitative estimation using chlorophyll-type pigments and effects on dissolved free amino acids, Mar. Ecol. Prog. Ser., 52:145.

    CAS  Google Scholar 

  • Sarmiento, J. L., Toggweiler, J. R., and Najjar, R., 1988, Ocean carbon cycle dynamics and atmospheric pCO2, Philos. Trans. R. Soc. London, Ser. A., 325:3.

    CAS  Google Scholar 

  • Scavia, D., 1988, On the role of bacteria in secondary production, Limnol. Oceanogr., 33:1220.’.

    Google Scholar 

  • Scavia, D., and Laird, G. A. 1987, Bacterioplankton in lake Michigan: Dynamics, controls, and significance to carbon flux, Limnol. Oceanogr., 32:1017.

    CAS  Google Scholar 

  • Schmidt, T. M., DeLong, E. F., and Pace, N. R., 1991, Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing, J. Bacteriol., 173:4371.

    PubMed  CAS  Google Scholar 

  • Sharp, J. H., 1973, Size classes of organic carbon in seawater, Limnol. Oceanogr., 18:441.

    Google Scholar 

  • Sharp, J. H., Underhill, P. A., and Hughes, D. J., 1979, Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum, J. Phycol., 15:353.

    CAS  Google Scholar 

  • Sherr, B. F., Sherr, E. B., and Hopkinson, C. S., 1988, Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow, Hydrobiologia, 159:19.

    Google Scholar 

  • Sherr, E. B., and Sherr, B.F., 1991, Planktonic microbes: Tiny cells at the base of the ocean’s food web, Trends Ecol. Evol., 6:50.

    PubMed  CAS  Google Scholar 

  • Sieburth, J. M., Johnson, P. W., and Hargraves, P. E., 1988, Ultrastructure and ecology of Aureococcus anophagefferens gen. et sp. nov. (Chrysophyseae): The dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, Summer 1985, J. Phycol, 24:416.

    Google Scholar 

  • Simon, M., and Azam, F., 1989, Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol. Prog. Ser., 51:201.

    CAS  Google Scholar 

  • Sorokin, Y. I., 1971, Bacterial populations as components of oceanic ecosystems, Mar. Biol., 11:101.

    Google Scholar 

  • Stockner, J. G., and Antia, N. J., 1986, Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective, Can. J. Fish. Aquat. Sci., 43:2472.

    Google Scholar 

  • Stramski, D., and Kiefer, D. A., 1990, Optical properties of marine bacteria, Ocean Optics X. Conf. Proc. Int. Soc. for Optical Engineering, Orlando, FL. 1302:250.

    Google Scholar 

  • Strayer, D., 1988, On the limits to secondary production, Limnol. Oceanogr., 33:1217.

    Google Scholar 

  • Sugimura, Y., and Suzuki, Y., 1988, A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of liquid sample, Mar. Chem., 24:105.

    CAS  Google Scholar 

  • Suttle, C. A., Fuhrman, J. A., and Capone, D. G., 1990, Rapid ammonium cycling and concentration-dependent partitioning of ammonium and phosphate: implications for carbon transfer in planktonic communities, Limnol. Oceanogr., 36:424.

    Google Scholar 

  • Suttle, C. A., Fuhrman, J. A., and Capone, D. G. 1990, Rapid flux and concentration dependent partitioning of ammonium in marine plankton communities, Limnol. Oceanogr., 35:424.

    CAS  Google Scholar 

  • Suttle, C. A., Chan, A. M., and Cottrell, M. T., 1991, Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton, Appl. Environ. Microbiol., 57:721.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., Sugimura, Y., and Itoh, T., 1985, A catalytic oxidation method for the determination of total nitrogen dissolved in seawater, Mar. Chem., 16:83.

    CAS  Google Scholar 

  • Toggweiler, J. R., 1988, Is the downward dissolved organic matter flux important in carbon transport? Productivity of the ocean: Present and past (Dahlem Conference), W. H. Berger, V. S. Smetacek, and G. Wefer, New York, John Wiley.

    Google Scholar 

  • Tupas, L., and Koike, I., 1990, Amino acid and ammonium utilization by heterotrophic marine bacteria grown in enriched seawater, Limnol. Oceanogr., 35:1145.

    CAS  Google Scholar 

  • Vezina, A. F., and Platt, T., 1988, Food web dynamics in the ocean, Part 1. Best estimates of flow networks using inverse methods, Mar. Ecol. Prog. Ser., 42:269.

    Google Scholar 

  • Wheeler, P. A., and Kirchman, D. L., 1986, Utilization of inorganic and organic nitrogen by bacteria in marine systems, Limnol. Oceanogr., 31:998.

    CAS  Google Scholar 

  • Williams, P. J. J., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch., Sonderh. 5:1.

    Google Scholar 

  • Williams, P. J. J., 1984, Bacterial production in marine food chains, Emperor’s new suit of clothes? Flows in energy and materials in marine ecosystems: Theory and practice, M. J. R. Fasham, ed., Plenum, New York.

    Google Scholar 

  • Williams, P. J. J., 1990, The importance of losses during microbial growth: Commentary on the physiology, measurement and ecology of the release of dissolved organic material, Mar. Microb. Food Webs., 4:175.

    Google Scholar 

  • Williams, P. M., and Druffel, E. R. M., 1988, Dissolved organic matter in the oceans: Comments on a controversy, Oceanography, 1:14.

    Google Scholar 

  • Wood, A. M., and Van Valen, L. M., 1990, Paradox lost? On release of energy-rich compounds by phytoplankton, Mar. Microb. Food Webs., 4:103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fuhrman, J. (1992). Bacterioplankton Roles in Cycling of Organic Matter: The Microbial Food Web. In: Falkowski, P.G., Woodhead, A.D., Vivirito, K. (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Environmental Science Research, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0762-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0762-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0764-6

  • Online ISBN: 978-1-4899-0762-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics