Skip to main content

Explosive Compaction of Powders: Principle and Prospects

  • Chapter
Science of Sintering
  • 590 Accesses

Abstract

It is the wish of each powder metallurgist to posses presses with great capacities developing high pressures. Hard powders are especially difficult to compact. For this reason, the Hot Isostatic Pressing procedure was developed. Explosive Compaction on the other hand has the potential of developing very high pressures, dynamically applicable to powders. Its achievements include not only relatively high densities for green compacts(approximately 100% of theoretical density), but also the possibility of creating new materials. The main features of the method are explained and a survey of the latest developments is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ya. N. Riabinin: Certain Experiments on Dynamic Compression of Substances, Sovj. Phys.-Techn. J. 1 (1956) 2575.

    Google Scholar 

  2. S. W. Proembka: Compacting Metal Powders with Explosives, Powder Metallurgy 6 (1960) 125.

    Google Scholar 

  3. J. Pearson: The Explosive Compaction of Powders, in: Adv. in High Energy Rate Forming, ASTME, Detroit (1961) SP 60–158.

    Google Scholar 

  4. R. W. Leonard, D. Laber and V. D. Linse: Advances in Explosive Powder Compaction, Proc. 2nd. Int. Conf. HERF, Estes Park, Co., U.S.A. (1969), 8–3–1.

    Google Scholar 

  5. R. A. Prümmer: Latest Results in the Explosive Compaction of Metal and Ceramic Powders and their Mixtures, Proc. 4th Int. Conf. HERF (1973) Vail, Co. U.S.A.

    Google Scholar 

  6. A. A. Deribas, A. M. Stayer: Shock Compression of Porous Cylindrical Bodies, Fizika Gorenija i Vzryva 10 (1974), No. 4, 568–578.

    CAS  Google Scholar 

  7. R. A. Prümmer, G. Ziegler: Structure and Annealing Behaviour of Explosively Compacted Alumina Powders, Powder Metallurgy Int. 1 (1977), 374.

    Google Scholar 

  8. M. A. Meyers and S. L. Wang: An Improved Method for Shock Consolidation of Powders, 2nd Workshop on Industrial Application Feasibility of Dynamic Compaction Technology, Tokyo, ( December 1988 ).

    Google Scholar 

  9. G. R. Cowan: Plug Closure in a Container for Subjecting Sample to Shock Wave, US Patent 3.568.248 (March 9, 1971 ).

    Google Scholar 

  10. R. Prümmer: Explosivverdichten pulvriger Substanzen, Springer Verlag, Berlin, Heidelbg., New York, London, Paris, Tokyo (1987), ISBN 3–540–17029–4, p.37.

    Google Scholar 

  11. M. L. Wilkins, in Methods of Computational Physics, Vol. 3 (1964), B. Alder, S. Fernbach and M. Rotenberg (eds.), Academic Press, New York.

    Google Scholar 

  12. J. E. Reaugh: The Explosive Consolidation of Rods, J. Appl. Phys. 61 (1987) No. 3, 962–968.

    Article  CAS  Google Scholar 

  13. M. V. Thiel, A. S. Kusubov et al., eds.: Compendium of shock wave data, UCRL-50108 (TID-45000).

    Google Scholar 

  14. T. Akashi and A. B. Sawaoka: Shock Consolidation of Diamond Powders, J. Mat. Science 22 (1987) 3276–86.

    Article  CAS  Google Scholar 

  15. R. Prümmer: Dynamic Compaction of Powders, Proc. 19th Univ. Conf. Emergent Process Methods for High Technology Ceramics, R.F. Davis, H. Palmour III and R. L. Porter eds (1984), Plenum Press New York, London, 621–636.

    Google Scholar 

  16. D. Reybould: The Cold Welding of Powders by Dynamic Compaction, Int. J. Powder Met. and Techn. 16 (1980), 9–12.

    Google Scholar 

  17. D. G. Morris: The Compaction and Mechanical Properties of Metallic Glass, Metal Science J. 15 (1981), 116–124.

    CAS  Google Scholar 

  18. R. B. Schwartz, P. Kasiraj, T. Vreeland Jr., and T.J. Ahrens: A Theory for the Shock Wave Consolidation of Powders, Acta Met. in press.

    Google Scholar 

  19. H. W. Gourdin: Energy Deposition and Microstructural Modification in Dynamically Consolidated Metal Powders, J. Appl. Phys. in press.

    Google Scholar 

  20. C. F. Cline and M. L. Wilkins: Dynamic Consolidation of a Rapidly Solidified Ni-Mo-B-Alloy, 8th Int. HERF Conf., San Antonio, Tx, U.S.A. (1984).

    Google Scholar 

  21. V. Roman, V. G. Gorobtsov, B. S. Mitin and V. A. Vasiljev: Structure and Properties of Iron-Base Amorphous Materials, Proc. 4th Int. Conf. RQM, (1981), Sendai, Japan.

    Google Scholar 

  22. N. N. Thadhani, A. H. Mutz and T. Vreeland J.: Structure/Property Evaluation and Comparison between Shock-Wave Consolidated and Hot-Isostatically Pressed Compacts of RSP Pyromet 718 Alloy Powders, Acta. Met. 37 (1989) No. 3, 897–908.

    CAS  Google Scholar 

  23. H. Palmour III, et. al: Effect of Dynamic and Isostatic Compaction on the Microstructure and Mechanical Behavior of A1N, TiB2 and TiC, APS Conf. Interaction of Shock Waves with Condensed Matter, Santa Fe, N.M., U.S.A. (1983):

    Google Scholar 

  24. K. Y. Kim, A. S. Batchelor, K. L. More and H. Palmour III: Rate Controlled Sintering of Explosively Shock Conditioned Alumina Powders, Proc. 19th Univ. Conf. Emergent Process Mesthods for High Technology Ceramics, Raleigh, N.C., U.S.A. (1982).

    Google Scholar 

  25. E. K. Beauchamp, R. A. Graham and M. J. Carr: Densification of Shock Wave treated Aluminum Nitride and Aluminum Oxide, Int. Conf. Interaction of Shock Waves with Condensed Matter, Santa Fe, N.M., U.S.A. (1983).

    Google Scholar 

  26. D. L. Hankey, R. A. Graham, W. F. Hammetters, and B. Morosin: Shock Induced Reactivity Enhancement of Zr02–Powders, J. Mat. Sci. Letters 1 (1982), 446–447.

    Article  Google Scholar 

  27. S. S. Batsanov: Synthesis under Shock Wave Pressures, in: Preparative Methods in Solid State Chemistry, (1987), Academic Press Inc, New York and London, 133–146.

    Google Scholar 

  28. J. Golden, F. Williams, B. Morosin, E. L. Venturini and R. A. Graham: Catalytic Activity of Shock Loaded TiO2 Powder, AIP. Conf. Proceedings 78 (ed H.C. Wolfe) Shock Waves in Condenses Matter - 1981 (Menlo Park) American Institute of Physics (1982) New York, 74–76.

    Google Scholar 

  29. Y. Horguchi and Y. Nomura: Formation of Zinc Ferrite by Explosive Compaction, Jap. J. of Appl. Phys. 2 (1963) 312.

    Article  Google Scholar 

  30. Y. Horiguchi and Y. Nomura: Explosive Synthesis of TiC by Contact Technique, Bull. Chem. Soc. 36 (1963) 486–496.

    Article  CAS  Google Scholar 

  31. S. S. Batsanov and E. S. Zolotova: Shock Synthesis of Chromium II Calcogenides, Dokl. Akad. Nauk SSSR 180 (1968), 93.

    CAS  Google Scholar 

  32. S. A. Batanov et al.: Impact Synthesis of TiN Chalcogenides, Dokl. Akad. Nauk SSSR 185 (1969), 33–331.

    Google Scholar 

  33. G. Otto, 0. Y. Reece and U. Roy: Synthesis of Nb3Sn by Shock Waves, Appl. Phys. Letters 18 (1971), 418.

    Article  CAS  Google Scholar 

  34. D. D. Hughes and V. D. Linse: Formation of Superconducting Nb3Si by Explosive Compression, J. Appl. Phys. 50 (1979), 3500.

    Article  Google Scholar 

  35. L. E. Murr, A. W. Hare and N. G. Eror: Fabrication of Novel Bulk Superconductor Composites by Simultaneous Explosive Consolidation and Bonding, in; Shock Waves for Industrial Applications, E. Murr ed., Noyes Publ., Park Ridge, N.J. USA (1989), 473–527.

    Google Scholar 

  36. R. A. Prümmer, C. Polítis, H. Keschtkar: Synthesis of High Temperature Superconductors by Explosive Compaction, X Int. HERF Conf. Ljubljana, Jugoslavia, Sept.89.

    Google Scholar 

  37. S. Hagino et al.: Microstructures and Superconducting Properties of YBaCu Oxide Coils Repared by the Explosive Compaction Technique, Proc. 1st Int. Conf. Superconductivity, 1988, Nagoya, Japan.

    Google Scholar 

  38. T. Kottke and A. Niiler: Effects of Thermal Conductivity on the SHS-Reaction Kinetics, Material Processing by SHS, MTL-SP-87–3 (1987).

    Google Scholar 

  39. M.A. Meyers, N. N. Thadani and Li-Hsing Yu: Explosive Shock Wave Consolidation of Metal and Ceramic Powders, in Shock Waves for Industrial Application, L. Murr ed. Noyes Publications, Park Ridge, N.J. USA, (1989).

    Google Scholar 

  40. P. S. DeCarli and C. J. Jamieson: Formation of Diamond by Explosive Shock, Science 133 (1961), 1821.

    Google Scholar 

  41. P. S. DeCarli: Shock Wave Synthesis of High Pressure Phases, in: Science and Technology of Industrial Diamonds, ed. J. Burls, Industrial Diamond Inf. Bureau, London (1967) 49–64.

    Google Scholar 

  42. R. Bergman: Detaclad Explosion Bonded Metals and Shock Synthesized Polycrystalline Diamond, Proc. 7th Int. Conf. HERF, Leeds, US (1981), 142–151.

    Google Scholar 

  43. N. L. Coleburn and J. V. Forbes: Irreversible Transformation of Hexagonal Boron Nitride by Shock Compression, J. Chem. Phys. 48 (1968), 555.

    Article  CAS  Google Scholar 

  44. S. S. Batsanov and L. R. Batsanova: Effect of Explosions on Matter: Formation of Dense Modifications of Boron Nitride, Zh. Strukt. Chim. 9 (1968), 1024.

    Google Scholar 

  45. G. H. Zhadanovich et. al.: Method of Obtaining Diamond and/or Diamond-like Modifications of Boron-Nitride, UK-Pat. 2090239 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prümmer, R. (1989). Explosive Compaction of Powders: Principle and Prospects. In: Uskoković, D.P., Palmour, H., Spriggs, R.M. (eds) Science of Sintering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0933-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0933-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0935-0

  • Online ISBN: 978-1-4899-0933-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics