Skip to main content

Nonequilibrium Motion of Electrons and Ions Near Absorbing Boundaries

  • Chapter
Microwave Discharges

Part of the book series: NATO ASI Series ((NSSB,volume 302))

Abstract

This paper deals with nonequilibrium transport of electrons and ions near absorbing boundaries where particle densities tend to decrease as the boundary is approached. This decrease affects the behavior of average velocity and average energy of the particles near the boundary. Consequently, transport and rate coefficients cannot be characterized by the local value of electric field. The purpose of this paper is to elucidate these nonequilibrium effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Druyvesteyn, Physica 10:61 (1930) and 1:1003 (1934); E. M. Morse, W. P. Allis and E. S. Lamar, Phys. Rev. 48:412 (1935); and B. Davydov, Phys. Z. Sowj. Un. 8: 59 (1935).

    Google Scholar 

  2. L. G. H. Huxley and R. W. Crompton, “The Diffusion and Drift of Electrons in Gases,” Wiley, N. Y. (1974).

    Google Scholar 

  3. P. Segur, M. Yousfi, J. P. Boeuf, E. Marode, A. J. Davies, and J. G. Evans, The microscopic treatment of nonequilibrium regions in a weakly ionized gas, in: “Electrical Breakdown and Discharges in Gases,” E. E. Kunhardt and L. H. Luessen, eds., Plenum, N.Y. (1983). Vol. 89A of NATO Advanced Study Institute Series B: Physics.

    Google Scholar 

  4. L. C. Pitchford, J. P. Boeuf, P. Segur, and E. Marode, Non-Equilibrium electron transport: a brief overview, in:“Nonequilibrium Effects in Ion and Electron Transport,” J. W. Gallagher, D. F. Hudson, E. E. Kunhardt, and R. J. van Brunt, eds., Plenum, N. Y. (1990). This reference includes Proceedings of the Sixth International Swarm Seminar, held Aug. 2–5, 1989, in Glen Cove, N. Y.

    Google Scholar 

  5. K. Kumar, H. R. Skullerud, and R. E. Robson, Aust. J. Phys. 33: 343 (1980).

    Article  CAS  Google Scholar 

  6. H. Grad, Principles of the kinetic theory of gases, in: “Handbuch der Physik,” S. Flugge, ed., Springer-Verlag, Berlin (1956), Vol. XII. Chapter V of this article describes the thirteen moment method of solving the Boltzmann equation for molecules in local thermodynamic equilibrium.

    Google Scholar 

  7. I. I. Kolodner, Moment Description of Gas Mixtures-I, Report # NYO-7980, Institute of Mathematical Sciences, New York University, 10 September 1957. Work performed under AEC Contract # AT(30–1)-1480. P. Sockol, NASA report around 1965.

    Google Scholar 

  8. C. D. Child, Phys. Rev. 32:492 (1911); I. Langmuir, Phys. Rev. 2: 450 (1913).

    Google Scholar 

  9. W. P. Allis and S. J. Buchsbaum, Plasma theory, in: “Electrons, Ions, and Waves: Selected Works of William Phelps Allis,” S. C. Brown, ed., MIT Press, Cambridge, MA (1967).

    Google Scholar 

  10. J. H. Ingold, Transient response of electrons in a low pressure discharge, Paper V-1, Third Gaseous Electronics Meeting, Australian National University, Canberra, 8–10 February 1984. (Abstract of this talk can be obtained by request from the author.)

    Google Scholar 

  11. See L. C. Pitchford and T. A. Green, Bull. Am. Phys. Soc. 29:148 (1984) for constant cross section results; P. J. Drallos and J. M. Wahedra, Phys. Rev. A 40:1967 (1989) for argon and neon cross section results.

    Google Scholar 

  12. M. E. Duffy and J. H. Ingold, Bull. Am. Phys. Soc. 34: 307 (1989).

    Google Scholar 

  13. E. B. Wagner, F. J. Davis, and G. S. Hurst, J. Chem. Phys. 47: 3138 (1967).

    Article  CAS  Google Scholar 

  14. J. H. Parker and J. J. Lowke, Phys. Rev. 181: 290, (1969).

    Article  Google Scholar 

  15. J. J. Lowke and J. H. Parker, Phys. Rev. 181: 302, (1969).

    Article  CAS  Google Scholar 

  16. H. A. Blevin and J. Fletcher, Aust. J. Phys. 37: 593 (1984).

    Article  Google Scholar 

  17. J. H. Ingold, Phys. Rev. A 42: 950 (1990).

    Article  CAS  Google Scholar 

  18. J. Lucas, Int. J. Electronics 21: 535 (1966).

    Article  Google Scholar 

  19. R. W. L. Thomas and W. R. L. Thomas, J. Phys. B: Atomic and Molecular Physics 2: 562 (1969).

    Article  Google Scholar 

  20. Y. Sakai, H. Tagashira, and S. Sakamoto, J. Phys. B: Atomic and Molecular Physics 5: 1010 (1972).

    Article  CAS  Google Scholar 

  21. T. J. Sornmerer, W. N. G. Hitchon, and J. E. Lawler, Phys. Rev. A 39: 6356 (1989).

    Article  Google Scholar 

  22. Y. Sakai, H. Sugawara, and H. Tagashira, An analysis of position-dependent electron swarm behavior in steady-state Townsend discharges, Paper HA-7, 44th Annual Gaseous Electronics Conference, Albuquerque, NM, 22–25 October 1991 ).

    Google Scholar 

  23. J. H. Ingold, Phys. Rev. A 40: 3855 (1989).

    Article  Google Scholar 

  24. E. Blue and J. H. Ingold, Thermionic energy conversion, in: “Direct Energy Conversion,” G. W. Sutton, ed., Wiley, N. Y. (1966).

    Google Scholar 

  25. J. J. Lowke, J. H. Parker, and C. A. Hall, Phys Rev. A 15: 1237 (1977).

    Article  Google Scholar 

  26. G. L. Braglia and J. J. Lowke, J. Phys. D: Applied Physics 12: 1831 (1979).

    Article  CAS  Google Scholar 

  27. R. E. Robson, Aust. J. Phys. 34: 223 (1981).

    Article  Google Scholar 

  28. J. H. Ingold, Phys. Rev. A 44: 3822 (1991).

    CAS  Google Scholar 

  29. E. E. Kunhardt, J. Wu, and B. Penetrante, Phys. Rev. A 37: 1654 (1988).

    Article  Google Scholar 

  30. G. Roumeliotis and L. E. Cram, J. Phys. D: Appl. Phys. 22: 113 (1989).

    Article  Google Scholar 

  31. L. E. Cram, Phys. Rev. A 43: 4480 (1991).

    Google Scholar 

  32. E. W. McDaniel, “Collision Phenomena in Ionized Gases,” Wiley & Sons, N. Y. (1964), Chap. 9.

    Google Scholar 

  33. C. B. Zarowin, J. Vac. Sci. Technol. A2: 1537 (1984).

    CAS  Google Scholar 

  34. J. R. Forrest and R. N. Franklin, J. Phys. D 1: 1357 (1968).

    Article  Google Scholar 

  35. J. H. Ingold, Phys. Fluids 15: 75 (1972).

    Article  CAS  Google Scholar 

  36. A. Metze, D.W. Ernie, and H. J. Oskam, Phys. Rev. A 39: 4117 (1989).

    Article  Google Scholar 

  37. D. J. Economou, D. R. Evans, and R. C. Alkire, J. Electrochem. Soc. 135: 756 (1988).

    Article  Google Scholar 

  38. R. T. Farouki, S. Hamaguchi, and M. Dalvie, Phys. Rev. A 44: 2664 (1991).

    Article  Google Scholar 

  39. G. H. Wannier, Bell Sys. Tech. J. 32: 170 (1966).

    Google Scholar 

  40. J. E. Lawler, Phys. Rev. A 32: 2977 (1985).

    Article  CAS  Google Scholar 

  41. R. Forman, Phys. Rev. 123: 1537 (1961).

    Article  CAS  Google Scholar 

  42. J. H. Ingold, J. Appl. Phys. 40: 62 (1969).

    Article  Google Scholar 

  43. Case B1 of Ref. 37 is characterized by equal masses and charge exchange collisions only, while Case B3 is characterized by equal masses and elastic collisions only.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingold, J. (1993). Nonequilibrium Motion of Electrons and Ions Near Absorbing Boundaries. In: Ferreira, C.M., Moisan, M. (eds) Microwave Discharges. NATO ASI Series, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1130-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1130-8_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1132-2

  • Online ISBN: 978-1-4899-1130-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics