Skip to main content
  • 167 Accesses

Abstract

This paper explains the various models of learning in artificial neural networks which are appropriate for implementation as analog VLSI circuits and systems. We do not cover the wider topic of analog VLSI neural networks in general, but restrict the presentation to circuits which perform in situ learning. Both supervised and unsupervised learning models are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackley, D.H., Hinton, G.E. and Sejnowski, T.J. “A learning algorithm for Boltzmann machines”, Cognitive Science, Vol. 9, pp.147–169, 1985.

    Article  Google Scholar 

  • Alspector, J., Allen, R.B., Jayakumar, A., Zeppenfeld, T., and Meir, R., “Relaxation networks for large supervised learning problems”, in Advances in Neural Information Processing Systems 3, D. S. Touretzky, J. Moody, and R. Lippmann, editors, San Mateo, CA: Morgan Kaufmann, pp. 1015–1021, Apr. 1991.

    Google Scholar 

  • Arima, Y., Mashiko, K., Okada, K., Yamada, T., Maeda, A., Notani, H., Kondoh, H., and Kayano, S., “A 336-Neuron, 28K Synapse, Self-Learning Neural Network Chip with Branch-Neuron-Unit Architecture”, IEEE J. Solid St. Ccts., Vol. 26, pp. 1637–1644, Nov. 1991.

    Article  Google Scholar 

  • Becker, S. and Hinton, G. E., “Self-Organizing Neural Network that Discovers Surfaces in Random-Dot Stereograms”, Nature, Vol. 355, pp. 161–163, 1992.

    Article  Google Scholar 

  • Card, H.C., Schneider, C.R., and Schneider, R.S., “Learning Capacitive Weights in Analog CMOS Neural Networks”, J. VLSI Signal Proc, in press.

    Google Scholar 

  • Card, H. C, Schneider, C, and Moore, W.R., “Hebbian plasticity in MOS synapses”, IEE Proc. J., Vol. 138, pp. 13–16, Feb. 1991.

    Google Scholar 

  • Carpenter, G.A. and Grossberg, S., “ART-2: Self Organization of Stable Category Recognition Codes for Analog Input Patterns”, Appi. Optics, Vol., 26, pp. 4919–4930, 1987.

    Article  Google Scholar 

  • Durbin, R. and Willshaw, D., “An Analog Approach to the Travelling Salesman Problem using an Elastic Net Method”, Nature, Vol. 326, pp. 689–691, 1987.

    Article  Google Scholar 

  • Hebb, D.O., Organization of Behaviour. New York: John Wiley, 1949.

    Google Scholar 

  • Hertz, J., Krogh, A., and Palmer, R. G., Introduction to the Theory of Neural Computation. Menlo Park, CA: Addison-Wesley, 1991.

    Google Scholar 

  • Hinton, G. E., “Connectionist learning procedures”, Artificial Intelligence, Vol. 40, pp. 185–234, 1989.

    Article  Google Scholar 

  • Hochet, B., Peiris, V., Abdo, S., and Declercq, M.J., “Implementation of a Learning Kohonen Neuron based on a new Multilevel Storage Technique”, IEEE J. Solid St. Ccts., Vol. 26, pp. 262–267, Mar 1991.

    Article  Google Scholar 

  • Holler, M., Tarn, S., Castro, H., and Benson, R., “An electrically trainable artificial neural network with 10240 floating gate synapses”, Proc. IJCNN-89, Part II, pp, 191–196, 1989.

    Google Scholar 

  • Hopfield, J., “Neurons with Graded Response have Collective Computational Properties like those of Two-State Neurons”, Proc. Natl. Acad. Sci., Vol. 81, pp. 3088–3092, 1984.

    Article  Google Scholar 

  • Kohonen, T., “The Self Organizing Map”, Proc. IEEE t Vol. 78, pp. 1464–1480, Sept 1990.

    Article  Google Scholar 

  • Lazzaro, J., Ryckebusch, S., Mahowald, M.A., and Mead, C.A., “Winner-Take-All Networks of O(N) Complexity”, in Advances in Neural Information Processing Systems I, D.S. Touretzky, editor, San Mateo, CA: Morgan Kaufmann, pp. 703–711, 1989.

    Google Scholar 

  • Linares-Barranco, R., Sanchez-Sinencio, E., Rodriguez-Vazquez, A., and Huertas, J.L., “A Modular T-Mode Design Approach for Analog Neural Network Hardware Implementations”, IEEE J. Solid St. Ccts., Vol. 27, pp. 701–713, 1992.

    Article  Google Scholar 

  • Linsker, R., “Self Organization in a Perceptual Network”, IEEE Computer, Vol. 21, pp. 105–117, 1988.

    Article  Google Scholar 

  • Mahowald, M. and Douglas, R., “A Silicon Neuron”, Nature, Vol. 354, pp. 515–518, Dec 1991.

    Article  Google Scholar 

  • Mann, J. R. and Gilbert, S., “An Analog Self-Organizing Neural Network Chip”, in Advances in Neural Information Processing Systems I, D.S. Touretzky, editor, San Mateo, CA: Morgan Kaufmann, pp. 739–747, 1990.

    Google Scholar 

  • Maundy, B. and El-Masry, E., “Switched Capacitor Neural Networks using Pulse Based Arithmetic”, Elect. Lett., Vol. 26, pp. 1118–1119, 1990.

    Article  Google Scholar 

  • Mead, CA., Analog VLSI and Neural Systems. Reading: Addison-Wesley, 1988.

    Google Scholar 

  • Moody, J. and Darken, C.J., “Fast Learning in Networks of Locally Tuned Processing Units”, Neural Computation, Vol. 1, pp. 281–294, 1989.

    Article  Google Scholar 

  • Movellan, J. R., “Contrastive Hebbian Learning in the Continuous Hopfield Model”, Connectionist Models: Proceedings of the 1990 Summer School, D.S. Touretzky et al, editors, pp. 10–17, 1990.

    Google Scholar 

  • Murray, A. F., Del Corso, D., and Tarassenko, L., “Pulse Stream VLSI Neural Networks Mixing Analog and Digital Techniques”, IEEE Trans, on Neural Networks, Vol. 2, pp. 193–204, Mar. 1991.

    Article  Google Scholar 

  • Nowlan, S.J., and Hinton, G.E., “Evaluation of Adaptive Mixtures of Competing Experts”, in Advances in Neural Information Processing Systems 3, D. S. Touretzky, J. Moody, and R. Lippmann, editors, San Mateo, CA: Morgan Kaufmann, pp. 774–780, 1991.

    Google Scholar 

  • Oja, E., “Neural Networks, Principal Components, and Subspaces”, Int. J. Neural Systems, Vol. 1, pp. 61–68, 1989.

    Article  MathSciNet  Google Scholar 

  • Peterson, C. and Anderson, J.R., “A mean field theory learning algorithm for neural networks”, Complex Systems, Vol. 1, pp. 995–1019, 1987.

    MATH  Google Scholar 

  • Raffel, J., Mann, J., Berger, R., Soares, A., and Gilbert, S., “A Generic Architecture for Wafer Scale Neuromorphic Systems”, Proc. IEEE Int. Conf. Neural Networks, Vol. III, pp. 501–513, 1987.

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E. and Williams, R.W., “Learning Representations by Back Propagating Errors”, Nature, Vol. 323, pp.533–536, 1986.

    Article  Google Scholar 

  • Sage, J.P., Thompson, K., and Withers, R.S., “An Artificial Neural Network Integrated Circuit based on MNOS/CCD Principles”, In AIP Conf Proc. 151, Neural Networks for Computing, Snowbird, ed. J.S. Denker, American Institute of Physics, New York, pp. 381–385, 1986.

    Google Scholar 

  • Sanger, T.D., “Optimal Unsupervised Learning in a Single Layer Linear Feedforward Neural Network”, Neural Networks, Vol. 2, pp. 459–473, 1989.

    Article  Google Scholar 

  • Schneider, C. and Card, H.C., “Analog CMOS Contrastive Hebbian Networks”, SPIE Proc. 1709, Applications of Artificial Neural Networks III, Orlando, Florida, Apr 21–24, pp. 726–735, 1992.

    Google Scholar 

  • Schneider, C. R. and Card, H. C., “Analog CMOS Hebbian Synapses”, Elec. Lett., Vol 27, pp. 785–786, 1991.

    Article  Google Scholar 

  • Shoemaker, P.A., Lagnado, I., and Shimabukuro, R., “Artificial neural network implementation with floating gate MOS devices”, in Hardware Implementations of Neuron Nets and Synapses, NSF/ONR Workshop, San Diego, CA, P. Mueller, editor, pp.114 – 119, Jan 14–15, 1988.

    Google Scholar 

  • Tomlinson, M.S., Walker, D.J., and Sivilotti, M.A. (1990), “A Digital Neural Network Architecture for VLSI”, Int. Joint Conf. on Neural Networks, San Diego, Vol. II, pp. 545–550, 1990.

    Google Scholar 

  • Tsay, S.W. and Newcomb, R.W., “VLSI Implementation of ARTI Memories”, IEEE Trans. Neural Networks, Vol. 2, pp. 214–221, 1991.

    Article  Google Scholar 

  • Von der Malsburg, G, “Self Organization of Orientation Selective Cells in Striate Cortex”, Kybernetik, Vol. 14, pp. 85–100, 1973.

    Article  Google Scholar 

  • Walker, M., Hasler, P., and Akers, L., “A CMOS Neural Network for Pattern Association”, IEEE Micro, pp. 68–74, Oct. 1989.

    Google Scholar 

  • Watola, D., Gembala, D., and Meador, J., “Competitive Learning in Asynchronous Pulse Density Integrated Circuits”, IEEE Int. Symp. on Ccts. and Systems, San Diego, CA, May 10–13, 1992.

    Google Scholar 

  • Willshaw, DJ. and von der Malsburg, G, “How Patterned Neural Connections can be Set Up by Self Organization”, Proc. Royal Soc. London, Vol. B194, pp. 431–445, 1976.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Card, H.C. (1994). Analog VLSI Neural Learning Circuits — A Tutorial. In: Delgado-Frias, J.G., Moore, W.R. (eds) VLSI for Neural Networks and Artificial Intelligence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1331-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1331-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1333-3

  • Online ISBN: 978-1-4899-1331-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics