Skip to main content

Process-Induced Compositional Changes of Flaxseed

  • Chapter
Process-Induced Chemical Changes in Food

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 434))

Abstract

Flaxseed has been used as an edible grain in different parts of the world since ancient times. However, use of flaxseed oil has been limited due to its high content of polyunsaturated fatty acids. Nonetheless, α-linolenic acid, dietary fiber and lignans of flaxseed have regained attention. New varieties of flaxseeds containing low levels of α-linolenic acid are available for edible oil extraction. Use of whole flaxseed in foods provides a means to utilise all of its nutrients and require minimum processing steps. However, the presence of cyanogenic glucosides and diglucosides in the seeds is a concern as they may release cyanide upon hydrolysis. In addition, the polyunsaturated fatty acids may undergo thermal or autooxidation when exposed to air or high temperatures that are used in food preparation. Studies todate on oxidation products of intact flaxseed lipids have not shown any harmful effects when flaxseed is included, up to 28%, in the baked products. Furthermore, cyanide levels produced as a result of autolysis are below the harmful limits to humans. However, the meals left after oil extraction require detoxification but, by solvent extraction, to reduce the harmful effects of cyanide when used in animal rations. Flaxseed meal is a good source of proteins; these could be isolated by complexation with sodium hexametaphosphate without changing their nutritional value or composition. In addition, the effect of germination on proteins, lipids, cyanogenic glycosides, and other minor constituents of flaxseed is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amarowicz, R.; Wanasundara, P.K.J.P.D.; Shahidi, F. Chromatographic separation of flaxseed phenolics. Die Nahrung 1994, 38, 20–26.

    Google Scholar 

  • Axelson, M.; Sjovall, J.; Gustafsson, B.; Setchell, K.D.R. Origin of lignans in mammals and identification of precursor from plants. Nature 1982, 298, 659–660.

    Article  PubMed  CAS  Google Scholar 

  • Bemiller, J.N. Quince seed, psyllium seed, flaxseed and okra gums. Industrial Gums. 2nd ed.; Whistler, R.L. and Bemiller, J.N., Eds. Academic Press: New York, NY, 1973; pp 331–337.

    Google Scholar 

  • Bell, J.M.; Keith, M.O. Nutritional evaluation of linseed meals from flax with yellow or brown hulls, using mice and pigs. Anim. Feed Sci. Technol. 1993, 43, 1–18.

    Article  Google Scholar 

  • Bhatty, R.S. Physicochemical properties of roller-milled barley bran and flour. Cereal Chem. 1993, 70, 397–402.

    CAS  Google Scholar 

  • Bhatty, R.S.; Cherdkiatgumchai, P. Compositional analysis of laboratory-prepared and commercial samples of linseed meal and of hulls isolated from flax. J. Am. Oil Chem. Soc. 1990, 67, 79–84.

    Article  CAS  Google Scholar 

  • Bhatty, R.S.; Sosulski, F.W.; Wu, K.K. Protein and non-protein nitrogen contents of some oilseeds and peas. Can. J. Plant Sci. 1973, 53, 651–657.

    Article  CAS  Google Scholar 

  • Bakke, J.E. and Klosterman, H.J. A new diglucoside from flaxseed. Proc. North Dakota Acad. Sci. 1956, 10, 18–22.

    Google Scholar 

  • Butler, G.W. The distribution of cyanogenic glucosides, linamarin and lotustralin in higher plants. Phytochem. 1965, 4, 127–131.

    Article  CAS  Google Scholar 

  • Butler, G.W.; Bailey, T.W.; Kennedy, L.D. Studies on the glucosidase “linamarase”. Phytochem. 1965, 4, 369–381.

    Article  CAS  Google Scholar 

  • Carter, J.F. Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal Foods World 1993, 38, 753–759.

    CAS  Google Scholar 

  • Chadha, R.K.; Lawrence, J.F.; Ratnayake, W.M.N. Ion chromatographic determination of cyanide released from flax under autohydrolysis conditions. Food Addit. Contam. 1995, 12, 527–533.

    Article  PubMed  CAS  Google Scholar 

  • Champagne, E.T.; Phillippy, B.Q. Effects of pH on Ca, Zn, and phytate solubilities and complexes following in vitro digestion of soy protein isolates. J. Food Sci. 1989, 54, 587–590.

    Article  CAS  Google Scholar 

  • Chen, Z-Y; Ratnayake, W.M.N.; Cunnane, S.C. Oxidative stability of flaxseed lipids during baking. J. Am. Oil Chem. Soc. 1994, 71, 629–632.

    Article  CAS  Google Scholar 

  • Cheryan, M. Phytic acid interactions in food systems. CRC Crit. Rev. Food Sci. Nutr. 1980, 13, 297–334.

    Article  CAS  Google Scholar 

  • Conn, E.E. Cyanogenic glycosides. The Biochemistry of Plants, Vol. 7, Secondary Plant Products; Conn, E.E., Ed.; Academic Press, New York, NY, 1981; pp 479–500.

    Google Scholar 

  • Cui, W.; Mazza, G.; Biliaderis, L.C. Chemical structure, molecular size distribution and rheological properties of flaxseed gum. J. Agric. Food Chem. 1994, 42, 1891–1895.

    Article  CAS  Google Scholar 

  • Cunnane, S.C; Ganguli, S.; Menard, C; Liede, A.C.; Hamadeh, M.J.; Chen, Z-Y; Wolever, T.M.S.; Jenkins, D.A. High-α-linolenic acid flaxseed (Linum ussitatissimum L.); some nutritional properties in humans. Brit. J. Nutr. 1993, 69, 443–453.

    Article  PubMed  CAS  Google Scholar 

  • Dabrowski, K.J.; Sosulski, F.W. Comparison of free and hydrolysable phenolic acids in defatted flours often oilseeds. J. Agric. Food Chem. 1984, 32, 128–130.

    Article  CAS  Google Scholar 

  • Davis, N.T.; Nightingale, R. The Effects of phytate on intestinal absorption and secretion of Zn, and whole body retention of Zn, Cu, Fe and Mn in rats. Brit. J. Nutr. 1975, 34, 8 A.

    Google Scholar 

  • Dev, D.K.; Quensel, E. Functional properties and microstructural characteristics of linseed flour and protein isolate. Lebensm. Wiss. u. Technol 1986, 19, 331–337.

    CAS  Google Scholar 

  • Dev, D.K.; Quensel, E. Preparation and functional properties of linseed protein products containing differing levels of mucilage. J. Food Sci. 1988, 53, 1834–1837, 1857.

    Article  CAS  Google Scholar 

  • Dev, D.K.; Quensel, E. Functional properties of linseed protein products containing different levels of mucilage in selected food systems. J. Food Sci. 1989, 54, 183–186.

    Article  CAS  Google Scholar 

  • Dev, D.K.; Sienkienicz, T. Isolation and subunit composition of 11S globulin of linseed (Linum ussitatissimum L.). Die Nahrung 1987, 31, 767–769.

    Article  CAS  Google Scholar 

  • Dick, T.A.; Yang, X. Flaxseed in arctic char and rainbow trout nutrition. Flaxseed in Human Nutrition, Cunnane, S.C; Thompson, L.U., Eds.; American Oil Chemists’ Society, Champaign, IL, 1995, pp 295–314.

    Google Scholar 

  • Dorrel, D.G. Distribution of fatty acid within the seed of flax. Can. J. Plant Sci. 1970, 50, 71–75.

    Article  Google Scholar 

  • Erdman, J.W. Oilseed phytates, nutritional implications. J. Am. Oil Chem Soc. 1979, 56, 736–741.

    Article  CAS  Google Scholar 

  • Erskine, A.J.; Jones, J.K.N. The structure of linseed mucilage. Part I. Can. J. Chem. 1957, 35, 1174–1182.

    Article  CAS  Google Scholar 

  • Fan, T.W.M.; Conn, E.E. Isolation and characterization of two cyanogenic β-glucosidases from flax seeds. Arch. Biochem. Biophys. 1985, 243, 361–373.

    Article  PubMed  CAS  Google Scholar 

  • FAO/WHO. Energy and protein requirements. Report of a Joint FAO/WHO Adhoc Expert Committee. World Health Organization Technical Report Series 522. WHO, Geneva, 1973.

    Google Scholar 

  • Gosselin, R.E.; Coughlan, E.R. The stability of complexes between calcium and orthophosphate, polymeric phosphate and phytate. Arch. Biochem. Biophys. 1953, 45, 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Green, A.G.; Marshell, D.R. Variation for oil quantity and quality in linseed. Aust. J. Agric. Res. 1981, 32, 599–607.

    Article  CAS  Google Scholar 

  • Green, A.G.; Dribinenki, J.C.R Linola — a new premium polyunsaturated oil. Lipid Technol. 1994, 6, 29–33.

    Google Scholar 

  • Harris, R.K.; Haggerty, W.J. Assay for potentially anti-carcinogenic phytochemicals in flaxseed. Cereal Foods World 1993, 38, 147–151.

    CAS  Google Scholar 

  • Hunt, K.; Jones, J.K.N. The structure of linseed mucilage. Part II. Can. J. Chem. 1962, 40, 1266–1279.

    Article  CAS  Google Scholar 

  • Jiang, Z.; Ahn, D.U.; Sim, J.S. Effects of feeding flax and two types of sunflower seeds on fatty acid composition of yolk lipid classes. Poult. Sci. 1991, 70, 2467–2475.

    Article  PubMed  CAS  Google Scholar 

  • Kennelly, J. J.; Khorasani, R.G. Influence of flaxseed feeding on fatty acid composition of cow’s milk. Proc. Flax Inst. US. 1992, 54, 99–105.

    Google Scholar 

  • Kolodziejczyk, P.P.; Fedec P. Processing flaxseed for human consumption. Flaxseed and Human Nutrition, Cunnane, S.C.; Thompson, L.U., Eds.; American Oil Chemists’ Society, Champaign, IL, 1995, pp 261–280.

    Google Scholar 

  • Kozlowska, H.; Zadernowski, R.; Sosulski, F.W. Phenolic acids in oilseed flours. Die Nahrung. 1983, 27, 449–453.

    Article  PubMed  CAS  Google Scholar 

  • Loewus, F.A.; Loewus, M.N. Myo-inositol biosynthesis and metabolism. Biochemistry of Plants 3. Carbohydrates: structure and functions, Preiss, J., Ed.; Academic press, London, 1980, pp. 43–100.

    Google Scholar 

  • Madhusudhan, K.T.; Singh, N. Studies on linseed protein. J. Agric. Food Chem. 1983, 31, 959–963.

    Article  CAS  Google Scholar 

  • Madhusudhan, K.T.; Singh, N. Isolation and characterization of major fraction (12S) of linseed protein. J. Agric. Food Chem. 1985a, 33, 673–677.

    Article  CAS  Google Scholar 

  • Madhusudhan, K.T. and Singh, N. Effect of detoxification treatment on the physicochemical properties of linseed. J. Agric. Food Chem. 1985b, 33, 1219–1222.

    Article  CAS  Google Scholar 

  • Madhusudhan, K.T. and Singh, N. Effect of heat treatment on the functional properties of linseed meal. J. Agric. Food Chem. 1985c, 33, 1222–1226.

    Article  CAS  Google Scholar 

  • Madhusudhan, K.T. and Singh, N. Isolation and characterization of small molecular weight protein of linseed meal. Phytochem. 1985d, 24, 2507–2509.

    Article  CAS  Google Scholar 

  • Maga, J.A. Phytate, its chemistry, occurrence, food interactions, nutritional significance and methods of analysis-a review. J. Agric. Food Chem. 1982, 30, 1–9.

    Article  CAS  Google Scholar 

  • Mazza, G.; Biliaderis, C.G. Functional properties of flaxseed mucilage. J. Food Sci. 1989, 98, 237–238.

    Google Scholar 

  • Mazza, G.; Oomah, D.B. Flaxseed dietary fibre and cyanogens. Flaxseed in Human Nutrition, Cunnane, S.C.; Thompson, L.U., Eds.; American Oil Chemists’ Society, Champaign, IL, 1995, pp 56–81.

    Google Scholar 

  • Mills, J.T.; Chong, J. Ultrastructure and mineral distribution in heat damaged rapeseed. Can. J. Plant. Sci. 1977, 57, 21–34.

    Article  CAS  Google Scholar 

  • Muralikrishna, G.; Salimanth, P.V.; Tharanathan, R.N. Structural features of an arabinoxylan and rhamnogalac-turonan derivative from linseed mucilage. Carbohyd. Res. 1987, 161, 265–271.

    Article  CAS  Google Scholar 

  • Nolan, K.B.; Duffin, P.A.; McWeeny, D.J. Effects of phytate on mineral bioavailability: In vitro studies on Mg, Ca, Fe, Cu, and Zn (also Cd) solubilities in the presence of phytate. J. Food Sci. 1987, 40, 79–85.

    Article  CAS  Google Scholar 

  • Nosworthy, N.; Cladwell, R.A. The interaction of Zn and phytic acid with soybean glycinin. J. Sci. Food Agric. 1988, 44, 143–150.

    Article  CAS  Google Scholar 

  • Oomah, B.D.; Mazza, G. Flaxseed proteins-a review. Food Chem. 1993, 48, 109–114.

    Article  CAS  Google Scholar 

  • Oomah, B.D.; Mazza, G.; Kenaschuk, E. Cyanogenic compounds in flaxseeds. J. Agric. Food. Chem. 1992, 40, 1346–1348.

    Article  CAS  Google Scholar 

  • Oomah, B.D.; Kenaschuk E.O.; Cui, W.; Mazza, G. Variation in the composition of water soluble polysaccharides in flax. J. Agric. Food Chem. 1995, 43, 1484–1488.

    Article  CAS  Google Scholar 

  • Oomah, B.D.; Mazza, G.; Przybylski, R. Comparison of flaxseed meal lipids extracted with different solvents. Food Sci. Technol. 1996, 29, 654–658.

    CAS  Google Scholar 

  • Painter, A.; Nesbitt, G. Nitrogenous constituents of flaxseed. Indust. Eng. Chem. 1946, 38, 95–98.

    Article  CAS  Google Scholar 

  • Poulton, J.E. Toxic compounds in plant foodstuffs: cyanogens. Food Proteins, Kinsella, J.E.; Soucie, W.G., Ed.; American Oil Chemists’ Society, Champaign. IL. 1989, pp 381–401.

    Google Scholar 

  • Ranhotra, G.S.; Gelroth, J.A.; Glaser, B.K.; Potnis, P.S. Lipidemic response in rats fed flaxseed, oil and meal. Cereal Chem. 1993, 70, 364–366.

    CAS  Google Scholar 

  • Ratnayake, W.M.N.; Behrens, W.A.; Fischer, W.F.; L’Abbé, M.R.; Mongeau, R.; Beare-Rogers, J.L. Chemical and nutritional studies of flaxseed (variety- Linott) in rats. J. Nutr. Biochem. 1992, 3, 232–240.

    Article  CAS  Google Scholar 

  • Reinhold, J.G.; Nasr, K.; Lahimqarzadeh, A.; Hedayati, H. Effects of purified phytate and phytate rich bread upon metabolism of Zn, Ca, P and N in man. Lancet 1973, 1, 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Romans, J.R. Flaxseed and the composition and quality of pork. Flax in Human Nutrition, Cunnane, S.C.; Thompson, L.U., Eds.; American Oil Chemists’ Society, Champaign, IL, 1995, pp 348–362.

    Google Scholar 

  • Saio, K.; Gallant, D.; Petit, L. Electron microscope research in sunflower protein bodies. Cereal Chem. 1977, 54, 1171–1181.

    CAS  Google Scholar 

  • Selmar, D.; Lieberei, R.; Bichl, B. Metabolization and utilization of cyanogenic glycosides. The linustatin pathway. Plant Physiol. 1988, 86, 711–716.

    Article  PubMed  CAS  Google Scholar 

  • Setchell, K.D.R.; Lawson, A.M.; Boriello, S.P.; Harkness, R.; Gordon, H.; Morgan, D.M.L.; Kirk, D.N.; Anderson, L.C.; Adlercreutz, H; Axelson, M. Lignan formation in man-microbial involvement and possible roles in relation to cancer. Lancet, 1981, 2, 4–7.

    Article  PubMed  CAS  Google Scholar 

  • Shahidi, F.; Naczk, M. Effect of processing on the phenolic constituents of canola. Proc. of XIVth Inernational Conference of Groupe Polyphenols, Vol. 14, St. Catharines, ON, 1988, pp 89–92.

    Google Scholar 

  • Shahidi, F.; Naczk, M. 1989. Effect of processing on the content of condensed tannins in rapeseed meals. J. Food Sci. 54:1082–1083.

    Article  CAS  Google Scholar 

  • Shahidi, F.; Naczk, M.; Rubin, L.J.; Diosady, L.L. A novel processing approach for rapeseed and mustard seed-Removal of undesirable constituents by methanol-ammonia. J. Food Protect. 1988, 51, 743–749.

    CAS  Google Scholar 

  • Smith, A.K.; Johnsen, V.L.; Beckel, A.C. Linseed proteins, alkali dispersion and peptisation. Ind. Eng. Chem. 1946, 38, 353–356.

    Article  CAS  Google Scholar 

  • Smith, C.R. Jr.; Weisidler, D.; Miller, R.W. Linustin and neolinustatin; cyanogenic glycosides of linseed meal that protects animals against selenium toxicity. J. Org. Chem. 1980, 45, 507–510.

    Article  CAS  Google Scholar 

  • Sosulski, F.W.; Bakal, A. Isolated protein from rapeseed, flax and sunflower meals. Can. Inst. Foods Sci. Technol. J. 1969, 2, 28–32.

    CAS  Google Scholar 

  • Stitt, P. Nutritional importance of flax. Proc. Flax Inst. US 1986, 51, 23.

    Google Scholar 

  • Thompson, L.U. Nutritional and physiological effects of phytic acid. Food Proteins, Kinsella, J.E.; Soucie, E. Eds.; American Oil Chemists’ Society, Champaign, IL, 1989, pp. 410–431.

    Google Scholar 

  • Thompson, L.U. Phytates in canola and rapeseed. Canola and Rapeseed — Production, Chemistry, Nutrition and Processing Technology, Shahidi, F.; Ed.; Van Nostrand Reinhold, New York, NY, 1990, pp. 173–192.

    Chapter  Google Scholar 

  • Thompson, L.U.; Robb, P.; Serraino, M.; Cheung, F. Mammalian lignan production from various foods. Nutr. Cancer 1991, 16, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Varga, T.K.; Diosady, L.L. Simultaneous extraction of oil and antinutritional compounds from flaxseed. J. Am. Oil Chem. Soc. 1994, 71, 603–607.

    Article  CAS  Google Scholar 

  • Vassel, B.; Nesbitt, L.L. The nitrogenous constituents of flaxseed II. The isolation of a purified protein fraction. J. Biol. Chem. 1946, 159, 571–584.

    Google Scholar 

  • Wanasundara, P.K.J.P.D. Protein products and sprouts from flaxseed. 1995. Ph.D. Thesis, Memorial University of Newfoundland, St.John’s Canada.

    Google Scholar 

  • Wanasundara, P.K.J.P.D.; Shahidi, F. Removal of flaxseed mucilage by chemical and enzymatic treatments. Food Chem. 1997a, 59, 47–55.

    Article  CAS  Google Scholar 

  • Wanasundara, P.K.J.P.D.; Shahidi, F. Functional properties of acylated flaxseed protein isolates. J. Agric. Food Chem. 1997b, In press.

    Google Scholar 

  • Wanasundara, P.K.J.P.D.; Shahidi, F. Optimization of hexametaphosphate-assisted extraction of flaxseed proteins using response surface methodology. J. Food Sci. 1996, 61, 604–607.

    Article  CAS  Google Scholar 

  • Wanasundara, P.K.J.P.D.; Shahidi, F. Alkanol-ammonia-water/hexane extraction of flaxseed. Food Chem. 1994a, 49, 39–44.

    Article  CAS  Google Scholar 

  • Wanasundara, P.K.J.P.D.; Shahidi, F. Functional properties and amino acid composition of solvent extracted flaxseed meal. Food Chem. 1994b, 49, 45–51.

    Article  CAS  Google Scholar 

  • Wanasundara, P.K.J.P.D.; Amarowicz, R.; Kara, M.T.; Shahidi, F. Removal of cyanogenic glycosides of flaxseed. Food Chem. 1993, 48, 263–266.

    Article  CAS  Google Scholar 

  • Yiu, S.H.; Altosaar, I.; Fulcher, R.G. The effects of commercial processing on the structure and microchemical organisation of rapeseed. Food Micro. Struc. 1983, 2, 165–173.

    Google Scholar 

  • Youle, R.J.; Huang, A.H.C. Occurrence of low-molecular weight and high cysteine-containing albumin storage protein in oilseeds of diverse species. Am. J. Bot. 1981, 68, 44–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wanasundara, P.K.J.P.D., Shahidi, F. (1998). Process-Induced Compositional Changes of Flaxseed. In: Shahidi, F., Ho, CT., van Chuyen, N. (eds) Process-Induced Chemical Changes in Food. Advances in Experimental Medicine and Biology, vol 434. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1925-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1925-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1927-4

  • Online ISBN: 978-1-4899-1925-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics