Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 292))

Abstract

The study of Shockwave structure is particularly well-suited to the time and distance scales accessible to molecular dynamics (MD) simulations. An abbreviated history of these MD Shockwave studies is presented, along with a description of the MD techniques employed. Spallation - the destructive aftermath of Shockwave passage - is caused by rarefaction waves, which relieve high shock pressure at the free surfaces and subsequently collide at the spall plane, causing failure of the material. MD spallation calculations have been carried out recently on a massively parallel computer. Parallel computational techniques are discussed, along with some preliminary results for spallation in two-dimensional model materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BJ. Alder and T.E. Wainwright, in Transport Processes in Statistical Mechanics, I. Prigogine, editor (Interscience, New York, 1958)

    Google Scholar 

  2. W. W. Wood and F.R. Parker, J. Chem. Phys. 27, 720 (1957).

    Article  ADS  Google Scholar 

  3. B.J. Alder and T.E. Wainwright, Phys. Rev. A1, 18 (1970)

    ADS  Google Scholar 

  4. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  5. A. Rahman, Phys. Rev. 136A, 405 (1964).

    Article  ADS  Google Scholar 

  6. W.T. Ashurst and W.G. Hoover, Phys. Rev. Letters 31, 206 (1973); see also an excellent review of the day: W.G. Hoover and W.T. Ashurst, in Theoretical Chemistry, Vol. 1, H. Eyring and D. Henderson, editors (Academic, New York, 1975), p. 1.

    Article  ADS  Google Scholar 

  7. A. Paskin and G.J. Dienes, J. Appi. Phys. 43, 1605 (1972).

    Article  ADS  Google Scholar 

  8. D.H. Tsai and R.A. MacDonald, High Pressures 8, 403 (1976).

    Google Scholar 

  9. B.L. Holian and G.K. Straub, Phys. Rev. Letters 43, 1598 (1979)

    Article  ADS  Google Scholar 

  10. G. K. Straub, B.L. Holian, and R.G. Petschek, Phys. Rev. B 19, 4049 (1979)

    ADS  Google Scholar 

  11. G. K. Straub, B.L. Holian, and R.E. Swanson, Bull. Am. Phys. Soc. 25, 549 (1980).

    Google Scholar 

  12. V.Y. Klimenko and A.N. Dremin, in Detonatsiya, Chernogolovka, O.N. Breusov et al., editors (Akad. Nauk, Moscow, SSSR, 1978), p. 79.

    Google Scholar 

  13. B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, Phys. Rev. A 22, 2798 (1980).

    ADS  Google Scholar 

  14. S. Nose, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  15. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    ADS  Google Scholar 

  16. J.H. Irving and J.G. Kirkwood, J. Chem. Phys. 18, 817 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  17. B.L. Holian, AJ. De Groot, W.G. Hoover, and C.G. Hoover, Phys. Rev. A 41, 4552 (1990).

    ADS  Google Scholar 

  18. B.L. Holian, A.F. Voter, N.J. Wagner, RJ. Ravelo, S.P. Chen, W.G. Hoover, CG. Hoover, J.E. Hammerberg, and T.D. Dontje, Phys. Rev. A 43, 2655 (1991).

    ADS  Google Scholar 

  19. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    ADS  Google Scholar 

  20. S. M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. 33, 7983 (1986).

    Article  ADS  Google Scholar 

  21. D.H. Tsai and C.W. Beckett, J. Geophys. Res. 71, 2601 (1966).

    Article  ADS  Google Scholar 

  22. B.L. Holian, H. Flashka, and D.W. McLaughlin, Phys. Rev. A 24, 2595 (1981).

    ADS  Google Scholar 

  23. W.G. Hoover, Phys. Rev. Letters 42, 1531 (1979).

    Article  ADS  Google Scholar 

  24. B.L. Holian, Phys. Rev. A 37, 2562 (1988).

    ADS  Google Scholar 

  25. D.H. Tsai and S.F. Trevino, Phys. Rev. A 24, 2743 (1981).

    ADS  Google Scholar 

  26. J. Weertman, Mech. Mater. 5, 13 (1986).

    Article  Google Scholar 

  27. B.L. Holian, in Microscopic Simulations of Complex Flows, M. Mareschal, editor (Plenum, New York, 1990), p. 163.

    Chapter  Google Scholar 

  28. B.L. Holian and D.E. Grady, Phys. Rev. Letters 60, 1355 (1988).

    Article  ADS  Google Scholar 

  29. N.J. Wagner, B.L. Holian, and A.F. Voter, manuscript in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holian, B.L. (1992). Shock Waves and Spallation by Molecular Dynamics. In: Mareschal, M., Holian, B.L. (eds) Microscopic Simulations of Complex Hydrodynamic Phenomena. NATO ASI Series, vol 292. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2314-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2314-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2316-5

  • Online ISBN: 978-1-4899-2314-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics