Skip to main content

Hollow Cathode Discharges

  • Chapter
Glow Discharge Spectroscopies

Part of the book series: Modern Analytical Chemistry ((MOAC))

Abstract

Pioneering observations on the luminescent phenomena generated in evacuated tubes belong to the history of spectroscopy and date as far back as the mid-1800s.(1,2) Within this field of research, the first description of a hollow cathode discharge (HCD) published in the scientific literature can be found in the early years of this century, when a German physicist, Friedrich Paschen, reported on the quite unique features of this radiation source.(3) At the time he was mainly engaged in the investigation of the spectral series of H2 in the IR region and in the distribution of energy in the spectra emitted by glowing gases. Together with Back in 1913 he discovered the effect (named for both scientists) that gives rise to the splitting of emission lines when the source is subjected to a very strong magnetic field. This phenomenon is actually a modification of the Zeeman effect that requires less intense fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Plücker, Continued observation on the electrical discharge through rarefied gas tubes, Ann.Phys. 104(1858) 113.

    Article  Google Scholar 

  2. J. Plücker and J. W. Hittorf, On the spectra of ignited gases and vapors, with especial regard to the different spectra of the same elementary gaseous substance, Philos. Trans. 115(IV) (1865) 1.

    Google Scholar 

  3. F. Paschen, Bohrs Heliumlinien, Ann. Phys. 50 (IV) (1916) 901.

    Article  Google Scholar 

  4. F. Paschen, Die Funkenspektren des Aluminiums. I Teil, Ann. Phys. 71 (IV)(1923) 142

    Article  CAS  Google Scholar 

  5. F. Paschen, Die Funkenspektren des Aluminiums. II Teil, Ann. Phys. 71(IV) (1923) 538.

    Google Scholar 

  6. R. A. Sawyer and F. Paschen, Das erste Funkenspektrum des Aluminiums Al II, Ann. Phys. 84 (IV) (1927) 1.

    Article  CAS  Google Scholar 

  7. H Schüler, Ueber Potentialgefalle an Elektroden in Gasentladungsröhren, Phys. Z. 22 (1961) 264.

    Google Scholar 

  8. H Schüler, Ueber eine neue Lichtquelle und ihre Anwendungsmöglichkeiten, Z. Phys. 35 (1926) 323.

    Article  Google Scholar 

  9. H. Schüler and J. E. Keystone, Hyperfeinstrukturen und Kernmomente des Quecksilbers, Z. Phys. 72 (1931) 423.

    Article  Google Scholar 

  10. H. Schüler and H. Gollnow, Ueber eine lichtstarke Glimmentladungsröhre zur spektroskopischen Untersuchung geringer Substanzmengen, Z. Phys. 93 (1935) 611

    Article  Google Scholar 

  11. H. Schüler, Possibility of applying the hollow cathode discharge to spectroanalytical investigations, Proceedings of the I Colloquium Spectroscopicum Internationale, Strasbourg, 1950, pp. 169–171.

    Google Scholar 

  12. H. Schüler and A. Michel, Ueber zwei neue Hohlkathodenentladungsröhren, Spectrochim. Acta5 (1952) 322.

    Article  Google Scholar 

  13. H. Schüler, Ueber die Emissionsspektroskopie organischer Substanzen mit Hilfe der Elek-tronenstossanregung in der Glimmentladung. I, Spectrochim. Acta 4 (1950) 85.

    Article  Google Scholar 

  14. H. Schüler and L. Reinebeck, Ueber die Emissionsspektroskopie organischer Substanzen mit Hilfe der Elektronenstossanregung in der Glimmentladung. II, Spectrochim. Acta 6 (1954) 288.

    Article  Google Scholar 

  15. H. Schüler and L. Reinebeck, Ueber eine Methode der Variation der Anregungsbedingungen organischer Substanzen, Z. Naturforsch. 5a (1950) 657.

    Google Scholar 

  16. R. A. Sawyer, Excitation processes in the hollow discharge, Phys. Rev 36 (1930) 44.

    Article  CAS  Google Scholar 

  17. V. A. Konovalov and E. S. Frish, Illumination of the mixture of argon and nitrogen, Zh. Tekh. Fiz. 4 (1934) 523.

    CAS  Google Scholar 

  18. J. R. McNally, Jr., G. R. Harrison, and E. Rowe, A hollow cathode source applicable to spectrographic analysis for the halogens and gases, J. Opt. Soc. Am. 37 (1947) 93.

    Article  CAS  Google Scholar 

  19. A. Walsh, The application of atomic absorption spectra to chemical analysis, Spectrochim. Acta 7 (1955) 108.

    Article  CAS  Google Scholar 

  20. A. Walsh, Atomic absorption spectroscopy and its applications—Old and new, Pure Appl. Chem. 49 (1977) 1621.

    Article  CAS  Google Scholar 

  21. S. Caroli, Low-pressure discharges: Fundamental and applicative aspects, J. Anal. At. Spectrom. 2 (1987) 661.

    Article  CAS  Google Scholar 

  22. E. L. Grove and W. A. Loseke, Hollow cathode excitation of air-type atmospheres, Can. J. Spectrosc. 18 (1973) 33.

    Google Scholar 

  23. J. A. C. Broekaert, Emission spectrographic determination of all rare earths in solutions by hollow cathode excitation, Bull. Soc. Chim. Belg. 85 (1976) 261.

    Article  CAS  Google Scholar 

  24. P. Zanzucchi, A study of direct solution analysis with a new hollow cathode discharge system, Dissertation, University of Illinois, Urbana, University Microfilms Ltd., Ann Arbor, Mich., 1967.

    Google Scholar 

  25. S. Caroli, A. Alimonti, P. Delle Femmine, and S. K. Shukla, Determination of gallium in tumor-affected tissues by means of spectroscopic techniques, Anal. Chim. Acta 136 (1982) 225.

    Article  CAS  Google Scholar 

  26. S. Caroli, O. Senofonte, and P. Delle Femmine, Determination of trace elements in biological materials using a hollow-cathode discharge: Comparative study of matrix effects, Analyst (London) 108 (1983) 196.

    Article  CAS  Google Scholar 

  27. J. O. Foss, H. J. Svec, and R. J. Conzemius, The determination of trace elements in aqueous media without preconcentration using a cryogenic hollow-cathode ion source, Anal. Chim. Acta 147 (1983) 151.

    Article  CAS  Google Scholar 

  28. S. Caroli, Low-pressure discharges, in: Sample Introduction in Atomic Spectroscopy (J. Sneddon, ed.), pp. 225–253, Elsevier, Amsterdam, 1990.

    Chapter  Google Scholar 

  29. H. Falk, Hollow cathode discharge within a graphite furnace: Furnace atomic nonthermal excitation spectrometry (FANES), in: Improved Hollow Cathode Lamps for Atomic Spectroscopy (S. Caroli, ed.), pp. 74–118, Ellis Horwood Ltd., Chichester, UK, 1985.

    Google Scholar 

  30. A. Günther-Schulze, Glow discharge in a hollow cathode, Z. Techn. Phys. (1930) 49.

    Google Scholar 

  31. R. Mavrodineanu, Hollow cathode discharges: Analytical applications, J. Res. Natl. Bur. Stand. 89 (1984) 143.

    Article  CAS  Google Scholar 

  32. G. Francis, The glow discharge at low pressure, in: Handbuch der Physik (S. Flügge, ed.), Vol. 22, pp. 53–208, Springer-Verlag, Berlin, 1956.

    Google Scholar 

  33. R. Papoular, The Glow Discharge, Electrical Phenomena in Gases, pp. 123–140, Iliffe Books, London, 1965.

    Google Scholar 

  34. M. Kaminsky, Atomic and Ionic Impact Phenomena on Metal Surfaces, Springer-Verlag, Berlin, and Academic Press, New York, 1965.

    Book  Google Scholar 

  35. F. M. Penning, Electrical Discharges in Gases, Philips Technical Library, Eindhoven, Serviré B.V., Katwijk, The Netherlands, 1957.

    Google Scholar 

  36. P. F. Little and A. V. Engel, The hollow cathode effect and the theory of glow discharges, Proc. R. Soc. London Ser. A 224 (1954) 209.

    Article  CAS  Google Scholar 

  37. M. E. Pillow, A critical review of spectral and related physical properties of the hollow cathode discharge, Spectrochim. Acta 36B (1981) 821.

    Article  Google Scholar 

  38. V. S. Borodin and Yu. M. Kagan, The investigation of a hollow cathode discharge, Zh. Tekhn. Fiz. 36 (1966) 181.

    Google Scholar 

  39. H. Falk, Einige theoretische Ueberlegungen zum Vergleich der physikalischen Grenzen thermischer und nicht-thermischer spectroskopischer Strahlungsquellen, Spectrochim. Acta 32B (1977) 437.

    Article  CAS  Google Scholar 

  40. V. S. Borodin, Yu. M. Kagan, and L. I. Lyagushchenko, Investigation of a hollow cathode discharge. II. Zh. Tekh. Fiz. 11 (1967) 887.

    Google Scholar 

  41. F. Howorka and M. Pahl, Experimental determination of internal and external parameters of the negative glow plasma of a cylindrical hollow cathode discharge in argon, Z. Natur-forsch. A 27 (1972) 1425.

    CAS  Google Scholar 

  42. P. A. Büger and W. Fink, Analysis of solutions in a hollow cathode, Fresenius Z. Anal. Chem. 244 (1969) 121.

    Article  Google Scholar 

  43. C. Howard, M. E. Pillow, E. B. M. Steers, and D. W. Ward, Intensities of some spectral lines from hollow-cathode lamps, Analyst (London) 108 (1983) 145.

    Article  CAS  Google Scholar 

  44. F. Howorka, W. Lindinger, and M. Pahl, Ion sampling from the negative glow plasma in a cylindrical hollow cathode, Int. J. Mass Spectrom. Ion Phys. 12 (1973) 67.

    Article  CAS  Google Scholar 

  45. H. Patterson and D. H. Tomlin, Experiments by radioactive tracer methods on sputtering by rare gas ions, Proc. R. Soc. London Ser. A 265 (1962) 474.

    Article  CAS  Google Scholar 

  46. R. E. Honing, Sputtering of surfaces by positive ion beams of low energy, J. Appl. Phys. 29 (1958) 549.

    Article  Google Scholar 

  47. K. B. Mitchell, Spectroscopic studies of ionization in a hollow cathode discharge, J. Opt. Soc. Am. 51, (1961) 846.

    Article  CAS  Google Scholar 

  48. T. Musha, Cathodic sputtering in a hollow cathode discharge, J. Phys. Soc. (Jpn.) 17 (1962) 1440.

    Article  CAS  Google Scholar 

  49. A. D. White, New hollow cathode glow discharge, J. Appl. Phys. 30 (1959) 711.

    Article  Google Scholar 

  50. E. H. Daughtrey, D. L. Donohue, P. J. Slevin, and W. W. Harrison, Surface sputter effects in a hollow cathode discharge, Anal. Chem. 47 (1975) 683.

    Article  CAS  Google Scholar 

  51. B. E. Warner, Investigation of the hollow cathode discharge at high current density, Dissertation, University of Colorado, Boulder, 1979.

    Google Scholar 

  52. G. Knerr, J. Maierhofer, and A. Reis, Application of high-current hollow cathode for quantitative analysis of conductors and glasses, Fresenius’ Z. Anal. Chem. 229 (1967) 241.

    Article  CAS  Google Scholar 

  53. H. Falk, The limiting factors for intensity and line profile of radiation sources for atomic absorption spectrometry, Prog. Anal. At. Spectrosc. 5 (1982) 205.

    CAS  Google Scholar 

  54. J. G. Hirschberg, E. Hinnov, and F. W. Hofmann, Spectroscopic investigations of a weakly ionized plasma in a helium hollow cathode discharge, MATI (Plasma Physics Laboratory, Princeton University), 236, 1963.

    Google Scholar 

  55. T. Török and G. Záray, Versuche mit einem tiefgekühlten Zwillingshohlkathoden Inter-ferometer-Spektrometer. I. Spectrochim. Acta 30B (1975) 157.

    Article  Google Scholar 

  56. H. Falk and H. Lucht, Investigation of excitation processes in a hollow-cathode discharge by time-resolved measurements in the vacuum UV, J. Quant. Spectrosc. Radiat. Transfer 16 (1976) 909.

    Article  CAS  Google Scholar 

  57. T. Lee, S. Katz, and S. A. MacIntyre, The spectrographic determination of uranium 235. V. Routine application of a multiple hollow grating spectrograph, Appl. Spectrosc. 16 (1962) 92.

    Article  CAS  Google Scholar 

  58. I. A. Berezin and K. V. Aleksandrovich, Determination of sulfur, chlorine and fluorine in beryllium oxide by a spectrographic method, Zh. Anal. Khim. 16 (1961) 613.

    CAS  Google Scholar 

  59. M. P. Chaika, Analysis of low-volatile oxides for halogens, Opt. Spektrosk. 2 (1957) 421.

    CAS  Google Scholar 

  60. H. Falk, E. Hoffmann, and C. Lüdke, FANES (furnace atomic nonthermal excitation spectrometry). A new emission technique with high detection power, Spectrochim. Acta 36B (1981) 767.

    Article  Google Scholar 

  61. H. Falk, E. Hoffmann, and Ch. Lüdke, A comparison of furnace atomic nonthermal excitation spectrometry (FANES) with other atomic spectroscopic technique, Spectrochim. Acta 39B (1984) 283.

    Article  Google Scholar 

  62. H. J. Eichhoff and R. Voigt, Use of a metallic hollow cathode for spectrochemical analyses, in: Proceedings of the IX Colloquium Spectroscopicum Internationale Lyon, 1961, Vol. 3, pp. 309–317 (1962).

    Google Scholar 

  63. S. Caroli (ed.), Improved Hollow Cathode Lamps for Atomic Spectroscopy, Ellis Horwood Ltd., Chichester, UK, 1985.

    Google Scholar 

  64. S. Caroli, Hollow cathode lamps as excitation sources for analytical atomic spectroscopy, Fresenius’ Z. Anal. Chem. 324 (1986) 442.

    Article  CAS  Google Scholar 

  65. G. H. C. Freeman and W. H. King, Cu II spectral lines and their suitability as wavelength standards in the vacuum ultraviolet, J. Phys. E 10 (1977) 984.

    Article  Google Scholar 

  66. O. Appelblad and K. Schmidt, A liquid nitrogen cooled composite wall hollow cathode, USIP Report (University of Stockholm), 85–07, 1985.

    Google Scholar 

  67. M. Bessenrodt-Weberpals, A. Brockhaus, P. Jaunernik, H. Kempkens, C. Nieswand, and J. Uhlenbusch, Diagnostics of a steady-state low-pressure hollow cathode arc in argon, IEEE Trans. Plasma Sci. PS-14 (1986) 492.

    Article  Google Scholar 

  68. Y. R. Jong, R. L. Davis, J. C. Williams, and J. C. Williams, Jr., Evaluation of the mini-hollow cathode emission source for the analysis of microsamples, Appl. Spectrosc. 42 (1988) 1379.

    Article  Google Scholar 

  69. G. Rossi and N. Omenetto, Application of a demountable water-cooled hollow cathode lamp to atomic fluorescence spectrometry, Talanta 16 (1969) 263.

    Article  CAS  Google Scholar 

  70. F. Howorka, A. Scherleitner, V. Gieseke, and I. Kuen, Bakeable hollow cathode for the study of ion-molecule reactions in discharge in gaseous mixtures, Int. J. Mass Spectrom. Ion Phys. 32 (1980) 321.

    Article  CAS  Google Scholar 

  71. F. Babin and J.-M. Gagné, Characterization of an atom beam produced with the help of a hollow cathode discharge, Rev. Sci. Instrum. 57 (1986) 1536.

    Article  CAS  Google Scholar 

  72. D. E. Holmgren, R. W. Falcone, D. J. Walker, and S. E. Harris, Measurement of lithium and sodium metastable quartet atoms in a hollow cathode discharge, Opt. Lett. 9 (1984) 85.

    Article  CAS  Google Scholar 

  73. D. C. Gerstenberger, R. Solanki, and G. J. Collins, Hollow cathode metal ion lasers, IEEE J. Quantum Electron. 8 (1980) 820.

    Article  Google Scholar 

  74. T. Iijima, He-Zn+ ion laser using hollow cathode discharge with high-voltage operation, Jpn. J. Appl. Phys. 21 (1982) 1732.

    Article  CAS  Google Scholar 

  75. N. A. G. Ahmed and D. G. Teer, Characterization of aluminium coatings deposited in a hollow cathode discharge, Thin Solid Films 80 (1981) 49.

    Article  CAS  Google Scholar 

  76. L. Papp, Development of hollow cathode radiation sources. Part 2. Study of the effect of a cylinder placed in the cathode cavity on the emitted light intensity, J. Anal. At. Spectrom. 2 (1987) 407.

    Article  CAS  Google Scholar 

  77. J. Czakow, The microcavity hollow cathode and its analytical potential, in: Improved Hollow Cathode Lamps for Atomic Spectroscopy. (S. Caroli, ed.), Ellis Horwood Ltd., Chichester, UK, 1985, pp. 35–51.

    Google Scholar 

  78. V. A. Novoselov and V. B. Znamenskii, Correlations between the intensity of spectral lines, discharge parameters in a hollow cathode and its diameter, Spektrosk. Tr. Sib. Soveshch., 4th, 1965, pp. 273–278.

    Google Scholar 

  79. Z. Szilvássy, Principles and use of a boosted hollow cathode discharge source for atomic spectroscopy, in: Improved Hollow Cathode Lamps for Atomic Spectroscopy. (S. Caroli, ed.), Ellis Horwood Ltd., Chichester, UK, 1985, pp. 178–202.

    Google Scholar 

  80. Z. Szilvássy, A. Buzási, and E. Házi, Effect of cathode material and sample composition on the plasma characteristics of hollow cathode discharge, Acta Chim. Hung. 126 (1989) 353.

    Google Scholar 

  81. C. Popovici and M. Someşan, On the emission spectrum of the negative glow plasma of a hollow cathode discharge in magnetic field, Appl. Phys. Lett. 8 (1966) 103.

    Article  Google Scholar 

  82. N. K. Rudnevsky and D. E. Maksimov, Hollow cathode discharge in a magnetic field, in: Improved Hollow Cathode Lamps for Atomic Spectroscopy. (S. Caroli, ed.), Ellis Horwood Ltd., Chichester, UK, 1985, pp. 148–177.

    Google Scholar 

  83. B. Pavlovic and J. Dobrosavljevic, Influence of a rotating magnetic field on a hollow cathode discharge, Spectrochim. Acta 44B (1989) 1191.

    Article  Google Scholar 

  84. R. B. Djulgerova, The pulsed hollow cathode discharge. New spectroanalytical possibilities, in: Improved Hollow Cathode Lamps for Atomic Spectroscopy (S. Caroli, ed.), Ellis Horwood Ltd., Chichester, UK, 1985, pp. 55–73.

    Google Scholar 

  85. P. B. Farnsworth and J. P. Walters, The radiofrequency-boosted, pulsed hollow cathode lamp, in: Improved Hollow Cathode Lamps for Atomic Spectroscopy (S. Caroli, ed.), Ellis Horwood Ltd., Chichester, UK, 1985, pp. 119–147.

    Google Scholar 

  86. S. Caroli, A. Alimonti, and F. Petrucci, Analytical capabilities of the microwave-coupled hollow cathode discharge, Anal. Chim. Acta 136 (1982) 269.

    Article  CAS  Google Scholar 

  87. R. Tomellini, M. Cilia, O. Senofonte, G. Guantera, M. G. Del Monte Tamba, and S. Caroli, A newly devised microwave-boosted low pressure source in atomic emission spectrometry. Berichte des 3. Anwendertreffen Analytische Glimmentladungs-Spektroskopie, Jülich (FRG), April, 1990.

    Google Scholar 

  88. S. Caroli, The hollow cathode emission source: A survey of the past and a look into the future, Prog. Anal. At. Spectrosc. 6 (1983) 253.

    CAS  Google Scholar 

  89. Atomsource Direct Solids Atomizer, Varían Report, 1988.

    Google Scholar 

  90. W. Pekruhn, L. K. Thomas, I. Broser, A. Schroder, and U. Wenning, Chromium/silicon monoxide on copper solar selective absorbers, Sol. Energy Mater. 12 (1985) 199.

    Article  CAS  Google Scholar 

  91. N. Jakubowski, D. Stuewer, and W. Vieth, Performance of a glow discharge mass spectrometry for simultaneous multielement analysis of steel, Anal. Chem. 59 (1987) 1825.

    Article  CAS  Google Scholar 

  92. W. A. Mattson, B. L. Bentz, and W. W. Harrison, Coaxial cathode ion source for solids mass spectrometry, Anal. Chem. 48 (1976) 489.

    Article  CAS  Google Scholar 

  93. K. Rózsa, Hollow cathode discharges for gas lasers, Z. Naturforsch. 35a (1980) 649.

    Google Scholar 

  94. R. De Marco, D. Kew, and J. V. Sullivan, Determination of major constituents in metal samples by emission spectrometry using a demountable hollow cathode source and internal standardization, Spectrochim. Acta 41B (1986) 591.

    Article  Google Scholar 

  95. R. De Marco, D. J. Kew, C. Chadjilazarod, D. W. Owen, and J. V. Sullivan, Precision and accuracy of quantitative emission spectrometry with particular reference to gold alloys, Anal. Chim. Acta 94 (1987) 189.

    Article  Google Scholar 

  96. J. Borkowska-Burnecka and W. Zyrnicki, Comparison of spectra excited in HF and dc hollow cathode discharges, Spectrosc. Lett. 20 (1987) 795.

    Article  CAS  Google Scholar 

  97. J. Borkowska-Burnecka and W. Zyrnicki, Fluorine determination in a hollow cathode discharge by monofluoride emission spectra, Anal. Lett. 18 (1985) 1539.

    Article  CAS  Google Scholar 

  98. A. Buzási Gyórfiné, S. Caroli, A. Alimonti, and O. Senofonte, Comparative study of the hollow cathode and glow discharge radiation sources for spectrographs determination of alloying elements and impurities in steel, Acta Chim. Hung. 113 (1983) 295.

    Google Scholar 

  99. S. Caroli, F. Petrucci, and A. Alimonti, The microwave-coupled hollow cathode discharge and its analytical potential for the determination of trace elements in steel, Can. J. Spectrosc. 28 (1983) 156.

    CAS  Google Scholar 

  100. S. Caroli, O. Senofonte, N. Violante, F. Petrucci, and A. Alimonti, An investigation of the power of detection of the hollow cathode source in emission spectroscopy, Spectrochim. Acta 39B (1984) 1425.

    Article  Google Scholar 

  101. S. Caroli, F. Petrucci, A. Alimonti, and G. Záray, Analysis of minor elements in metals by microwave-coupled hollow cathode discharge, Spectrosc. Lett. 18 (1985) 609.

    Article  CAS  Google Scholar 

  102. O. Senofonte, N. Violante, O. Falasca, and S. Caroli, Solid sample investigation by means of a novel version of the microwave-coupled hollow cathode discharge (MW-HCD), Acta Chim. Hung. 126 (1989) 317.

    CAS  Google Scholar 

  103. J. Mierzwa and W. Zyrnicki, Determination of Nd, Ho, Er, Tm, and Y in solutions by hollow cathode discharge with copper cathodes, Anal. Lett. 21 (1988) 115.

    Article  CAS  Google Scholar 

  104. J. A. C. Broekaert, The investigation of two sample preparation techniques applied to the determination of rare earths in solutions with the aid of hollow cathode excitation, Spectrochim. Acta 35B (1980) 225.

    Article  Google Scholar 

  105. S. Caroli, O. Falasca, O. Senofonte, and N. Violante, The hollow cathode emission source and its analytical potential for the determination of major, minor and trace elements. II. Phosphorus, Can. J. Spectrosc. 30 (1985) 79.

    CAS  Google Scholar 

  106. S. Caroli, Development of a hollow cathode method for the spectroanalytical determination of trace elements in biological materials, Ann. Ist. Super. Sanità 19 (1983) 495.

    CAS  Google Scholar 

  107. S. Caroli, Katódporlasztasos sugárforrások jelenlegi alkalmazásai és várható fejlesztési irányzatai az emissziós spektroskópiában, Kérn. Közl. 62 (1984) 57.

    CAS  Google Scholar 

  108. A. Alimonti, S. Caroli, F. Petrucci, and C. Alvarez Herrero, Determination of arsenic by hollow-cathode emission spectrometry, Anal. Chim. Acta 156 (1984) 121.

    Article  CAS  Google Scholar 

  109. S. Caroli, A. Alimonti, and K. Zimmer, Applicability of a hollow cathode emission source for determining trace elements in electrically non-conducting powders, Spectrochim. Acta 38B (1983) 626.

    Google Scholar 

  110. S. Caroli, A. Alimonti, P. Delle Femmine, and S. K. Shukla, Determination of gallium in tumor-affected tissues by means of spectroscopic techniques, Anal. Chim. Acta 136 (1982) 225.

    Article  CAS  Google Scholar 

  111. E. B. M. Jansen and D. R. Demers, Hollow-cathode lamp-excited inductively coupled plasma atomic-fluorescence spectrometry: Performance under compromise conditions for simultaneous multi-element analysis, Analyst (London) 110 (1985) 541.

    Article  CAS  Google Scholar 

  112. W. R. Masamba, B. W. Smith, R. J. Krupa, and J. D. Winefordner, Atomic and ionic fluorescence in an inductively coupled plasma using hollow cathode lamps pulsed at high currents as excitation sources, Appl. Spectrosc. 42 (1988) 872.

    Article  CAS  Google Scholar 

  113. B. M. Patel and J. D. Winefordner, Laser-excited fluorescence of diatomic molecules of copper and lead in glow discharge sputtering, Appl. Spectrosc. 40 (1986) 667.

    Article  CAS  Google Scholar 

  114. S. Greenfield, T. M. Durrani, and J. F. Tyson, A comparison of boosted-discharge hollow cathode lamps and an inductively coupled plasma (ICP) as excitation sources in ICP atomic fluorescence spectrometry, Spectrochim. Acta 45B (1990) 341.

    Article  Google Scholar 

  115. D. R. Demers and C. D. Allemand, Atomic fluorescence spectrometry with an inductively coupled plasma as atomization cell and pulsed hollow cathode lamp for excitation, Anal. Chem. 53 (1981) 1915.

    Article  CAS  Google Scholar 

  116. B. Rosen, New developments in the application of a hollow cathode discharge tube designed for the quantitative determination of oxygen in metals, Appl. Spectrosc. 5 (1951) 20.

    Google Scholar 

  117. N. A. Zakorina, I. S. Lindstrem, and A. A. Petrov, Spectral-isotopic determination of nitrogen in refractory alloys by using a discharge with a hot hollow cathode, Zavod. Lab. 50 (1984) 30.

    CAS  Google Scholar 

  118. Y. Iida, Laser vaporization of solid samples into a hollow-cathode discharge for atomic emission spectrometry, Spectrochim. Acta 45B (1990) 427.

    Article  Google Scholar 

  119. L. Puig and R. Sacks, Hollow cathode plasma emission determination of F, Cl and Br in gas streams, Appl. Spectrosc. 43 (1989) 801.

    Article  CAS  Google Scholar 

  120. E. M. van Veldhuizen, F. J. de Hoog, and D. C. Schram, Optogalvanic effects in a hollow cathode glow discharge plasma, J. Appl. Phys. 56 (1984) 2047.

    Article  Google Scholar 

  121. B. M. Suri, R. Kapoor, G. D. Saksena, and P. R. K. Rao, Relative enhancement of optogalvanic signal of less abundant isotope in uranium hollow cathode discharge, Opt. Commun. 49 (1984) 29.

    Article  CAS  Google Scholar 

  122. R. A. Keller, B. E. Warner, E. P. Zalewski, P. Dyer, R. Engleman, Jr., and B. A. Palmer, The mechanism of the optogalvanic effect in a hollow-cathode discharge, J. Phys. 44 (1983) C7/23.

    Google Scholar 

  123. N. Ami, A. Wada, Y. Adachi, and C. Hirose, Optogalvanic measurement of the electric field inside the cathode fall region of neon hollow cathode discharge, Appl. Spectrosc. 43 (1989) 245.

    Article  CAS  Google Scholar 

  124. C. Hirose, T. Masaki, A. Wada, and Y. Adachi, Radial profile of the spectral width of the Ar 7d[5/2]3–4p[3/2]2 line inside the cathode fall region of Ar hollow cathode discharges, Appl. Spectrosc. 43 (1989) 87.

    Article  CAS  Google Scholar 

  125. T. Caesar and J. L. Heully, Experimental evidence of non-inverted population in a neon hollow cathode, Opt. Commun. 45 (1983) 258.

    Article  CAS  Google Scholar 

  126. S. Fujimaki, Y. Adachi, and C. Hirose, Optogalvanic measurement of the cathode-fall region of Kr hollow cathode discharge, Appl. Spectrosc. 41 (1987) 567.

    Article  CAS  Google Scholar 

  127. P. Apai, M. Jánossy, I. Pálmai, K. Rózsa, and G. Rubin, D.c. hollow cathode He-Kr discharge, SPIE 473 (1984) 198.

    Article  CAS  Google Scholar 

  128. I. Ebina, W. Sasaki, and T. Ohta, A 46 cm-discharge-length white light He-Cd II laser with coaxial type hollow cathode, Trans. IECE Jpn. 69 (1986) 367.

    Google Scholar 

  129. J. Mizeraczyk, J. Wasilewski, J. Konieczka, W. Urbanik, M. Grozeva, and J. Pavlik, Comparison of He-Kr+ laser oscillations in transverse and longitudinal hollow-cathode discharges, Proceedings of the International Conference on Lasers, 1981, pp. 877–881.

    Google Scholar 

  130. J. Mizeraczyck, J. Konieczka, J. Wasilewski, and K. Rózsa, High-voltage hollow-cathode He-Cd+ laser, Proceedings of the International Conference on Lasers, 1980, pp. 177–181.

    Google Scholar 

  131. M. Cilea, C. P. Cristescu, I. M. Popescu, and A. M. Preda, Hollow cathode He-Zn laser with an additional command electrode, Rev. Roum. Phys. 27 (1982) 357.

    CAS  Google Scholar 

  132. S. S. Cartaleva, S. V. Gateva, and V. J. Stefanov, Investigation of spontaneous lines from upper and lower levels of He-Ne laser line 632.8 nm excited in hollow cathode, SPIE 473 (1984) 192.

    Article  Google Scholar 

  133. T. Arai, K. Nihira, T. Iijima, and T. Goto, Excitation mechanism in the hollow cathode He-Zn+ laser, Ik. Kog. Doi. Ken. Hok. B-9 (1985) 67.

    Google Scholar 

  134. D. S. Gough and P. Hannaford, Very high resolution laser saturation spectroscopy in hollow-cathode and glow discharges, Opt. Commun. 55 (1985) 91.

    Article  CAS  Google Scholar 

  135. A. Baczyñski, M. Dzwonkowski, and P. Targowski, The influence of ignition method on laser output of pulse hollow cathode copper ion laser, Opt. Appl. XIII (1983) 231.

    Google Scholar 

  136. J.-b. Liu, Investigation of hollow cathode Ge II and Te II lasers, Appl. Phys. B 32 (1983) 211.

    Article  Google Scholar 

  137. M. Jánossy, K. Rózsa, P. Apai, and L. Csillag, D.c. hollow cathode He-Kr ion laser, SPIE 473 (1984) 177.

    Article  Google Scholar 

  138. T. Iijima, Noise measurement in a He-Zn hollow cathode laser tube, Physica 115C (1983) 257.

    CAS  Google Scholar 

  139. K. Rózsa, Gáz- és fémgozlézerek céljára alkalmazott üreges katódu kisülések, Magy. Fiz. Foly. XXXIV (1986).

    Google Scholar 

  140. C. M. Horwitz, S. Boronkay, M. Gross, and F. Davies, Hollow cathode etching and deposition, J. Vac. Sci. Technol. A6 (1988) 1837.

    Article  CAS  Google Scholar 

  141. C.M. Horwitz and D. R. McKenzie, High-rate hollow-cathode amorphous silicon deposition, Appl. Surf. Sci. 22/23 (1985) 925.

    Article  Google Scholar 

  142. P. Meubus, H. Lange, and G. Jean, Methane polymerization with a hollow cathode: Influence of the cathode metal, Plasma Chem. Plasma Process. 9 (1989) 527.

    Article  CAS  Google Scholar 

  143. P. Meubus and G. Jean, Methane polymerization using a hollow cathode, Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 32 (1987) 260.

    CAS  Google Scholar 

  144. H. Nagasaka, K. Yanagida, T. Tanabe, M. Takeuchi, and H. Mase, Compact ion source using superdense hollow cathode discharge and its application to thin film formation, Pur. Kot. 5 (1985) 155.

    CAS  Google Scholar 

  145. J. J. Cuomo and S. M. Rossnagel, Hollow-cathode enhanced magnetron sputtering, J. Vac. Sci. Technol. A4 (1986) 393.

    Article  CAS  Google Scholar 

  146. W. W. Harrison and B. L. Bentz, Glow-discharge mass spectrometry, Prog. Anal. Spectrosc. 11 (1988) 53.

    CAS  Google Scholar 

  147. G. Aston, Hollow cathode startup using a microplasma discharge, Rev. Sci. Instrum. 52 (1981) 1259.

    Article  Google Scholar 

  148. S. Tanaka, M. Akiba, Y. Arakawa, H. Horiike, and J. Sakuraba, Reduction of gas flow into a hollow cathode ion source for a neutral beam injector, Rev. Sci. Instrum. 53 (1982) 1038.

    Article  CAS  Google Scholar 

  149. H. M. Saad and O. Hoik, Investigation of beam emittance of a hollow cathode ion source, Egypt. J. Phys. 15 (1984) 45.

    CAS  Google Scholar 

  150. R. J. Barker, S. A. Goldstein, and R. E. Lee, Computer simulation of intense electron beam generation in a hollow cathode diode, NRL Memorandum Report 4279, 1980.

    Google Scholar 

  151. J. J. Rocca, J. Meyer, and G. J. Collins, Hollow cathode electron gun for the excitation of cw lasers, Phys. Lett. 87A (1982) 237.

    Article  Google Scholar 

  152. B. Kulakowska and W. Zyrnicki, Spectroscopic studies of low pressure plasma. Tin and its compounds, Phys. Scr. 33 (1986) 424.

    Article  CAS  Google Scholar 

  153. J. Borkowska-Burnecka and W. Żyrnicki, High resolution study of the A3π0-X1Σ+ and B3π1-X1Σ+ subsystems of the 115In79Br and 115In81Br molecules, Phys. Scr. 35 (1987) 141.

    Article  CAS  Google Scholar 

  154. A. I. Hershcovitch, V. J. Kovarik, and K. Prelec, Observation of a two-component electron population in a hollow cathode discharge, J. Appl. Phys. 67 (1990) 671.

    Article  CAS  Google Scholar 

  155. J. Hildebrandt, Voltage modulation in a pulsed hollow-cathode discharge and its relation to the occurrence of plasma satellites, Phys. Lett. 95A (1983) 365.

    Article  Google Scholar 

  156. J. Hildebrandt, Temporally and spatially resolved plasma satellites in a hollow-cathode source, J. Phys. B 16 (1983) 149.

    Article  CAS  Google Scholar 

  157. J. Hildebrandt, Microwave diagnostic of the pulsed generation in the hollow-cathode glow discharge, Z. Naturforsch. 38a (1983) 1088.

    Google Scholar 

  158. Yu. M. Kagan, Rate of ionisation and density of electrons in a hollow cathode, J. Phys. D 18 (1985) 1113.

    Article  CAS  Google Scholar 

  159. M. Kimura, Time-resolved spectral measurement in hollow cathode discharge tube by photon-counting method, Jpn. J. Appl. Phys. 23 (1984) 105.

    Article  CAS  Google Scholar 

  160. Z. Szilvássy, A. Buzási, and E. Házi, Effect of cathode material and sample composition on the plasma characteristics of hollow cathode discharge, Acta Chim. Hung. 126 (1989) 353.

    Google Scholar 

  161. D. S. Gough, P. Hannaford, M. Lowe, and A. P. Willis, Hyperfine structures in 51V using saturation spectroscopy in a hollow-cathode discharge, J. Phys. B 18 (1985) 3895.

    Article  CAS  Google Scholar 

  162. T. Masaki, A. Wada, Y. Adachi, and C. Hirose, Space charge distribution in the cathode fall region of an Ar hollow cathode discharge, Appl. Spectrosc. 42 (1988) 49.

    Article  CAS  Google Scholar 

  163. T. Masaki, A. Wada, Y. Adachi, and C. Hirose, Pressure dependence of space charge distribution in the cathode fall of Ar hollow cathode discharges, Appl. Spectrosc. 42 (1988) 51.

    Article  CAS  Google Scholar 

  164. T. Masaki, Y. Adachi, and C. Hirose, Application of optogalvanic spectroscopy to the measurement of pressure broadening and shift in the negative glow region of an Ar hollow cathode discharge, Appl. Spectrosc. 42 (1988) 54.

    Article  CAS  Google Scholar 

  165. C. A. Miderski and G. I. Gellene, Experimental evidence for the formation of H3* by H+ 5/e- dissociative recombination, J. Chem. Phys. 88 (1988) 5331.

    Article  CAS  Google Scholar 

  166. F. Moreno, J. M. Alvarez, J.C. Amaré, and E. Bernabeu, Stark effect of atomic sodium measured in a hollow cathode plasma by Doppler-free spectroscopy, J. Appl. Phys. 56 (1984) 1939.

    Article  CAS  Google Scholar 

  167. H. Koch and H. J. Eichler, Particle densities in high current hollow discharges, J. Appl. Phys. 54 (1983) 4939.

    Article  CAS  Google Scholar 

  168. R. D. LaBelle, W. M. Fairbank, Jr., R. Engleman, Jr., and R. A. Keller, Isotope shift and hyperfine structure of Pt I transitions in a hollow-cathode discharge, J. Opt. Soc. Am. B 6 (1989) 137.

    Article  CAS  Google Scholar 

  169. H. A. Phillips, H. L. Lancaster, M. Bonner Denton, K. Rózsa, and P. Apai, Self-absorption in copper hollow cathode discharges : Effects on spectral line shape and absorption sensitivity, Appl. Spectrosc. 42 (1988) 572.

    Article  CAS  Google Scholar 

  170. W. D. Deininger, G. Aston, and L. C. Pless, Hollow cathode plasma source for active spacecraft charge control, Rev. Sci. Instrum. 58 (1987) 1053.

    Article  Google Scholar 

  171. J. Z. Klose and J. M. Bridges, Radiance of a Pt/Cr-Ne hollow cathode spectral line source, Appl. Opt. 26 (1987) 5202.

    Article  CAS  Google Scholar 

  172. P. Chall, E. K. Souw, and J. Uhlenbusch, Laser diagnostics of a low-pressure hollow-cathode arc, J. Quant. Spectrosc. Radiat. Transfer 34 (1985) 309.

    Article  CAS  Google Scholar 

  173. J. F. Behnke, H. Lange, and H.-E. Wagner, Dissociation of titanium tetrachloride to titanium in hollow cathode discharges. Part I. Determination of the dissociation degree, Pol. J. Chem. 56 (1982) 1175.

    CAS  Google Scholar 

  174. S. Caroli, O. Senofonte, N. Violante, and R. Astrologo, Analytical capabilities of a microwave-coupled hollow-cathode discharge, J. Anal. At. Spectrom. 3 (1988) 887.

    Article  CAS  Google Scholar 

  175. M. Pataky-Szabó, L. Papp, and B. Derecskei, Investigations of processes in the three-electrode hollow cathode emission source, Acta Chim. Hung. 126 (1989) 359.

    Google Scholar 

  176. P. Pianarosa, Y. Demers, and J. M. Gagné, Atomization of thorium in a hollow-cathode type discharge, Spectrochim. Acta 39B (1984) 761.

    Article  Google Scholar 

  177. P. Pianarosa, P. Bouchard, J. P. Saint-Dizier, and J. M. Gagné, Density of uranium ions in the 4I09/2 ground state in a hollow-cathode type discharge, Appl. Opt. 22 (1983) 1568.

    Article  CAS  Google Scholar 

  178. R. Simonneau and R. Sacks, Modulation of commercial hollow cathode lamps by a magnetic field in a magnetron configuration, Appl. Spectrosc. 42 (1988) 1032.

    Article  CAS  Google Scholar 

  179. S. Tanaka, M. Akiba, H. Horiike, Y. Okumura, and Y. Ohara, Effect of magnetic field on the characteristics of hollow cathode ion source, Rev. Sci. Instrum. 54 (1983) 1104.

    Article  CAS  Google Scholar 

  180. W. G. Tong and D. A. Chen, Doppler-free spectroscopy based on phase conjugation by degenerate four-wave mixing in hollow cathode discharge, Appl. Spectrosc. 41 (1987) 586.

    Article  CAS  Google Scholar 

  181. E. M. van Veldhuizen and F. J. de Hoog, Analysis of a Cu-Ne hollow cathode glow discharge at intermediate currents, J. Phys. D 17 (1984) 953.

    Article  Google Scholar 

  182. M. J. Verheijen, H. C. W. Beijerinck, P. W. E. Berkers, D. C. Schram, and N. F. Verster, A hollow cathode arc in neon : Simultaneous laser probing and molecular-beam sampling of metastable atoms as a plasma diagnostic, J. Appl. Phys. 56 (1984) 3141.

    Article  CAS  Google Scholar 

  183. N. Violante, O. Senofonte, A. Marconi, O. Falasca, and S. Caroli, An investigation of the sputtering process in the microwave-coupled hollow cathode discharge, Can. J. Spectrosc. 33 (1988) 49.

    CAS  Google Scholar 

  184. W. Winiarczyk and L. Krause, Production of copper vapour in a pulsed hollow cathode discharge, J. Quant. Spectrosc. Radiat. Transfer 33 (1985) 581.

    Article  CAS  Google Scholar 

  185. W. Winiarczyk and L. Krause, Emission and absorption studies of copper vapor ejected from a pulsed hollow cathode discharge, J. Quant. Spectrosc. Radiat. Transfer 34 (1985) 163.

    Article  CAS  Google Scholar 

  186. D. Z. Zhechev and I. T. Koleva, Self-alignment and radiative lifetime measurements of some P II levels in a hollow-cathode discharge, Phys. Scr. 34 (1986) 221.

    Article  CAS  Google Scholar 

  187. D. Z. Zhechev, Incoherent signal at Hanle experiments in a hollow cathode discharge, Spectrosc. Lett. 20 (1987) 111.

    Article  CAS  Google Scholar 

  188. W. Zyrnicki and A. B. Basily, Atom and ion temperatures in a hollow cathode discharge, Spectrosc. Lett. 19 (1985) 713.

    Article  Google Scholar 

  189. W. Zyrnicki, Excitation temperatures of atoms and ions in a hollow cathode discharge, Spectrochim. Acta 40B (1985) 995.

    Article  Google Scholar 

  190. W. Zyrnicki, Z. Tomasik, and I. Nowicka, Spectroscopic measurement of plasma temperatures in a hollow cathode discharge, Spectrosc. Lett. 17 (1984) 207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caroli, S., Senofonte, O. (1993). Hollow Cathode Discharges. In: Marcus, R.K. (eds) Glow Discharge Spectroscopies. Modern Analytical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2394-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2394-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2396-7

  • Online ISBN: 978-1-4899-2394-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics