Skip to main content

The Atmosphere and UV-B Radiation at Ground Level

  • Chapter
Environmental UV Photobiology

Overview

Ultraviolet (UV) radiation emanating from the sun travels unaltered until it enters the earth’s atmosphere. Here, absorption and scattering by various gases and particles modify the radiation profoundly, so that by the time it reaches the terrestrial and oceanic biospheres, the wavelengths which are most harmful to organisms have been largely filtered out. Human activities are now changing the composition of the atmosphere, raising serious concerns about how this will affect the wavelength distribution and quantity of ground-level UV radiation.

The objective of this chapter is to give the reader familiarity with the basic concepts related to quantifying environmental UV radiation. Section 2 discusses the UV output of the sun and the geometric factors which relate the earth’s orbit and rotation to the sun’s illumination. Section 3 describes some aspects of the earth’s atmosphere, with emphasis on those atmospheric constituents which affect UV transmission. Section 4 presents fundamental concepts of absorption and scattering of atmospheric radiation and some techniques for estimating their influence on UV radiation reaching the biosphere. Biologically weighted radiation and its sensitivity to atmospheric variability are discussed in Section 5. Section 6 summarizes recent trends in UV radiation resulting from atmospheric changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaglehole, D., and Carter, G. G., 1992a, Antarctic skies 1. Diurnal variations of the sky irradiance, and UV effects of the ozone hole, spring 1990, J. Geophys. Res. 97:2589–2596.

    Article  Google Scholar 

  • Beaglehole, D., and Carter, G. G., 1992b, Antarctic skies 2. Characterization of the intensity and polarization of skylight in a high albedo environment, J. Geophys. Res. 97:2597–2600.

    Article  Google Scholar 

  • Beggs, C. J., and Wellmann, E., 1985, Analysis of light-controlled anthocyanin formation in coleoptiles of Zea mays 1.: The role of UV-B, blue, red and far-red light, Photochem. Photobiol. 41:481–486.

    Article  CAS  Google Scholar 

  • Blumthaler, M., and Ambach, W., 1988, Solar UVB-albedo of various surfaces, Photochem. Photobiol. 48:85–88.

    Article  PubMed  CAS  Google Scholar 

  • Bornman, J. F., Björn, L. O., and Åkerlund, H.-E., 1984, Action spectrum for inhibition by ultraviolet radiation of photosystem II activity in spinach thylakoids, Photobiochem. Photobiophys. 8:305–313.

    CAS  Google Scholar 

  • Brasseur, G. P., and Solomon, S., 1986, Aeronomy of the Middle Atmosphere, 2nd ed., D. Reidel, Dordrecht.

    Google Scholar 

  • Brühl, C., and Crutzen, P. J., 1989, On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation, Geophys. Res. Lett. 16:703–706.

    Article  Google Scholar 

  • Caldwell, M. M., Camp, L. B., Warner, C. W., and Flint, S. D., 1986, Action spectra and their key role in assessing biological consequences of solar UV-B radiation chance, in: Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life (R. C. Worrest and M. M. Caldwell, eds.), Springer-Verlag, Berlin, pp. 87–111.

    Chapter  Google Scholar 

  • Chan, G. L., Peak, M. J., Peak, J. G., and Haseltine, W. A., 1986, Action spectrum for the formation of endonuclease-sensitive sites and (6–4) photoproducts induced in a DNA fragment by ultraviolet radiation, Int. J. Radiat. Biol. 50:641–648.

    Article  CAS  Google Scholar 

  • Chandrasekhar, S., 1960, Radiative Transfer, Dover, New York.

    Google Scholar 

  • Cole, C. A., Forbes, D., and Davies, R. E., 1986, An action spectrum for UV photocarcinogenesis, Photochem. Photobiol. 43:275–284.

    Article  PubMed  CAS  Google Scholar 

  • Coulson, K. L., and Reynolds, W. D., 1971, The spectral reflectance of natural surfaces, J. Appl. Meteorol. 10:1285–1295.

    Article  Google Scholar 

  • Cutchis, P., 1980, A Formula for Comparing Annual Damaging Ultraviolet (DUV) Radiation Doses at Tropical and Mid-Latitude Sites, Federal Aviation Administration Report-FAA-EE 80-21, U.S. Department of Transportation, Washington, DC.

    Google Scholar 

  • Davidson, J. A., Cantrell, C. A., McDaniel, A. H., Shetter, R. E., Madronich, S., and Calvert, J. G., 1988, Visible-ultraviolet absorption cross section for NO2 as a function of temperature, J. Geophys. Res. 93:7105–7112.

    Article  CAS  Google Scholar 

  • De Fabo, E. C., and Noonan, F. P., 1983, Mechanism of immune suppression by ultraviolet radiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology, J. Exp. Med. 158:84–98.

    Article  PubMed  Google Scholar 

  • Dickerson, R. R., Stedman, D. H., and Delany, A. C., 1982, Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere, J. Geophys. Res. 87:45933–4946.

    Article  Google Scholar 

  • Doda, D. D., and Green, A. E. S., 1980, Surface reflectance measurements in the UV from an airborne platform, Part 1, Appl. Opt. 19:2140–2145.

    Article  PubMed  CAS  Google Scholar 

  • Doda, D. D., and Green, A. E. S., 1981, Surface reflectance measurements in the UV from an airborne platform, Part 2, Appl. Opt. 20:636–642.

    Article  PubMed  CAS  Google Scholar 

  • Duffett-Smith, P., 1988, Practical Astronomy with your Calculator, 3rd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Finlayson-Pitts, B. J., and Pitts, J. N., 1986, Atmospheric Chemistry, Wiley-Interscience, New York.

    Google Scholar 

  • Frederick, J. E., and Alberts, A. D., 1991, Prolonged enhancement in surface ultraviolet radiation during the Antarctic spring of 1990, Geophys. Res. Lett. 18:1869–1871.

    Article  CAS  Google Scholar 

  • Frederick, J. E., and Snell, H. E., 1990, Tropospheric influence on solar ultraviolet radiation: The role of clouds, J. Climate 3:373–381.

    Article  Google Scholar 

  • Frölich, C., and Shaw, G. E., 1980, New determination of Rayleigh scattering in the terrestrial atmosphere, Appl. Opt. 19:1773–1775.

    Article  Google Scholar 

  • Goody, R. M, and Yung, Y. L., 1989, Atmospheric Radiation, Oxford University Press, New York.

    Google Scholar 

  • Green, A. E. S., Cross, K. R., and Smith, L. A., 1980, Improved analytic characterization of ultraviolet skylight, Photochem. Photobiol. 31:59–65.

    Article  Google Scholar 

  • Häder, D.-P., and Worrest, R. C., 1991, Effects of enhanced solar ultraviolet radiation on aquatic ecosystems, Photochem. Photobiol. 53:717–725.

    Article  Google Scholar 

  • Hansen, J. E., and Travis, L. D., 1974, Light scattering in planetary atmospheres, Space Sci. Rev. 16:527–610.

    Article  Google Scholar 

  • Haurwitz, B., 1948, Insolation in relation to cloud type, J. Meteorol. 5:110–113.

    Article  Google Scholar 

  • Hoyt, D. V., Kyle, H. L., Hickey, H. R., and Maschhoff, R. H., 1992, The Nimbus 7 solar total irradiance: A new algorithm for its derivation, J. Geophys. Res. 97:51–63.

    Article  Google Scholar 

  • Ilyas, M, 1987, Effect of cloudiness on solar ultraviolet radiation reaching the surface, Atmos. Environ. 21:1483–1484.

    Google Scholar 

  • Imbrie, C. W., and Murphy, T. M., 1982, UV-action spectrum (254–405 nm) for inhibition of K+-stimulated adenosine triphosphatase from a plasma membrane of Rosa damascena, Photochem. Photobiol. 36:537–542.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), 1990, Climate Change, Cambridge University Press, New York.

    Google Scholar 

  • Josefsson, W., 1986, Solar Ultraviolet Radiation in Sweden, National Institute of Radiation Protection in Stockholm, SMHI Report-53, Norrköping, Sweden.

    Google Scholar 

  • Joseph, J. H., Wiscombe, W. J., and Weinman, J. A., 1976, The delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci. 33:2452–2459.

    Article  Google Scholar 

  • Keyse, S. M, Moses, S. H., and Davies, D. J. G., 1983, Action spectra for inactivation of normal and xeroderma pigmentosum human skin fibroblasts by ultraviolet radiation, Photochem. Photobiol. 37:307–312.

    Article  PubMed  CAS  Google Scholar 

  • Kligman, L. H., and Sayre, R. M., 1991, An action spectrum for ultraviolet induced elastosis in hairless mice: Quantification of elastosis by image analysis, Photochem. Photobiol. 53:237–242.

    Article  PubMed  CAS  Google Scholar 

  • Kondratyev, K. Ya., 1969, Radiation in the Atmosphere, Academic Press, New York.

    Google Scholar 

  • Liu, S. C., McKeen, S. A., and Madronich, S., 1991, Effects of anthropogenic aerosols on biologically active ultraviolet radiation, Geophys. Res. Lett. 18:2265–2268.

    Article  CAS  Google Scholar 

  • Logan, J. A., 1985, Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence, J. Geophys. Res. 90:10463–10482.

    Article  Google Scholar 

  • Logan, J. A., 1989, Ozone in rural areas of the United States, J. Geophys. Res. 94:8511–8532.

    Article  CAS  Google Scholar 

  • Lubin, D., and Frederick, J. E., 1989, Measurements of enhanced springtime ultraviolet radiation at Palmer station, Antarctica, Geophys. Res. Lett. 16:783–785.

    Article  Google Scholar 

  • Lubin, D., and Frederick, J. E., 1990, Column ozone measurements from Palmer station, Antarctica: Variations during the austral springs of 1988 and 1989, J. Geophys. Res. 95:13883–13889.

    Article  Google Scholar 

  • Lubin, D., Frederick, J. E., and Krueger, A. J., 1989, The ultraviolet radiation environment of Antarctica: McMurdo station during September-October 1987, J. Geophys. Res. 94:8491–8496.

    Article  Google Scholar 

  • Lubin, D., Mitchell, B. G., Frederick, J. E., Roberts, A. D., Booth, C. R., Lucas, T., and Neuschuler, D., 1992, A contribution toward understanding the biospherical significance of Antarctic ozone depletion, J. Geophys. Res. 97:7817–7828.

    Article  CAS  Google Scholar 

  • Madronich, S., 1992a, Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the Earth’s surface, Geophys. Res. Lett. 19:37–40.

    Article  CAS  Google Scholar 

  • Madronich, S., 1992b, The Natural Ultraviolet Radiation Environment, paper presented at the 20th Annual Meeting of the American Society for Photobiology, Marco Island, Florida, June 20–24.

    Google Scholar 

  • McCartney, E. J., 1976, Optics of the Atmosphere, Wiley, New York.

    Google Scholar 

  • McCormick, M. P., Veiga, R. E., and Chu, W., 1992, Stratospheric ozone profile and total ozone trends derived from the SAGE I and SAGE II data, Geophys. Res. Lett. 19:269–272.

    Article  CAS  Google Scholar 

  • McGee, T. J., and Burris, J., Jr., 1987, SO2 absorption cross section in the near U.V., J. Quant. Spectros. Radiat. Transfer 37: 165–182.

    Article  CAS  Google Scholar 

  • McKinlay, A. F., and Diffey, B. L., 1987, A reference action spectrum for ultraviolet induced erythema in human skin, in: Human Exposure to Ultraviolet Radiation: Risks and Regulations (W. R. Passchler and B. F. M. Bosnajokovic, eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Meador, W. E., and Weaver, W. R., 1980, Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement, J. Atmos. Sci. 37:630–643.

    Article  Google Scholar 

  • Molina, L. T., and Molina, M. J., 1986, Absolute absorption cross sections of ozone in the 185-to 350-nm wavelength range, J. Geophys. Res. 91:14501–14508.

    Article  CAS  Google Scholar 

  • National Research Council (NRC), 1986, Acid Deposition Long Term Trends, National Academy Press, Washington, DC.

    Google Scholar 

  • Oltmans, S. J., Komhyr, W. D., Franchois, P. R., and Matthews, W. A., 1989, Tropospheric ozone: Variations from surface and ECC ozonesonde observations, in: Ozone in the Atmosphere, proceedings of the Quadrennial Ozone Symposium 1988 and Tropospheric Ozone Workshop, Göttingen, Federal Republic of Germany, August 1988 (R. Bojkov and P. Fabian, eds.), Deepak Publishing, Hampton, Virginia.

    Google Scholar 

  • Paltridge, G. W., and Barton, I. J., 1978, Erythemal Ultraviolet Radiation Distribution over Australia—the Calculations, Detailed Results and Input Data Including Frequency Analysis of Observed Australian Cloud Cover, Division of Atmospheric Physics Technical Paper-33, Commonwealth Scientific and Industrial Research Organization, Australia.

    Google Scholar 

  • Peak, M. J., Peak, J. G., Moehring, M. P., and Webb, R. B., 1984, Ultraviolet action spectra for DNA dimer induction, lethality, and mutagenesis in Escherichia coli with emphasis on the UVB region, Photochem. Photobiol. 40:613–620.

    Article  PubMed  CAS  Google Scholar 

  • Pitts, D. G., Cullen, A. P., and Hacker, P. D., 1977, Ocular effects of ultraviolet radiation from 295 to 365 nm, Invest. Ophthalmol. Visual Sci. 16:932–939.

    CAS  Google Scholar 

  • Roy, C. T., Gies, H. P., and Graeme, E., 1990, Ozone depletion, Science, 347:235–236.

    Google Scholar 

  • Rundel, R. D., 1983, Action spectra and the estimation of biologically effective UV radiation, Physiol. Plant. 58:360–366.

    Article  Google Scholar 

  • Setlow, R. B., 1974, The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis, Proc. Natl. Acad. Sci. U.S.A. 71:3363–3366.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, R. C., and Jagger, J., 1979, Ultraviolet (254–405 nm) action spectrum and kinetic studies of analine uptake in Escherichia coli B/R, Photochem. Photobiol. 30:661–666.

    Article  Google Scholar 

  • Shetter, R. E., McDaniel, A. H., Cantrell, C. A., Madronich, S., and Calvert, J. G., 1992, Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during MLOPEX, J. Geophys. Res. 97:10349–10359.

    Article  CAS  Google Scholar 

  • Smart, W. M., 1979, Textbook on Spherical Astronomy, 6th ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Smith, R. C., Prezelin, B. B., Baker, K. S., Bidigare, R. R., Boucher, N. P., Coley, T., Karentz, D., MacIntyre, S., Matlick, H. A., Menzies, D., Ondrusek, M., Wan, Z., and Waters, K. J., 1992, Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters, Science 255:952–959.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, J. W., 1971, Fourier series representation of the position of the sun, Search 2:172.

    Google Scholar 

  • Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K., 1988, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layers, Appl. Opt. 27:2502–2509.

    Article  PubMed  CAS  Google Scholar 

  • Stamnes, K., Slusser, J., Bowen, M., Booth, C., and Lucas, T., 1990, Biologically effective ultraviolet radiation, total ozone abundance, and cloud optical depth at McMurdo station, Antarctica, September 15, 1988, through April 15, 1989, Geophys. Res. Lett. 17:2181–2184.

    Article  Google Scholar 

  • Stamnes, K., Jin, Z., Slusser, J., Booth, C., and Lucas, T., 1992, Several-fold enhancement of biologically effective ultraviolet radiation levels at McMurdo station Antarctica during the 1990 ozone “hole,” Geophys. Res. Lett. 19:1013–1016.

    Article  Google Scholar 

  • Stein, B., Rahmsdorf, H. J., Steffen, A., Litfin, M., and Herrlich, P., 1989, UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein, Mol. Cell. Biol. 9:5169–5181.

    PubMed  CAS  Google Scholar 

  • Steinmetz, V., and Wellmann, E., 1986, The role of solar UV-B in growth regulation of cress (Lepidium sativum L.) seedlings, Photochem. Photobiol. 43:189–193.

    Article  Google Scholar 

  • Stolarski, R. S., Bloomfield, P., McPeters, R. D., and Herman, J. R., 1991, Total ozone trends deduced from Nimbus 7 TOMS data, Geophys. Res. Lett. 18:1015–1018.

    Article  CAS  Google Scholar 

  • Stolarski, R., Bojkov, R., Bishop, L., Zerefos, C., Staehelin, J., and Zawodny, J., 1992, Measured trends in stratospheric ozone, Science 256:342–349.

    Article  PubMed  CAS  Google Scholar 

  • Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K., 1989, Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res. 94:16287–16301.

    Article  Google Scholar 

  • UNEP, 1991, Environmental Effects of Ozone Depletion: 1991 update (J. C. Van der Leun, M. Tevini, and R. C. Worrest, eds.), United Nations Environmental Programme, Nairobi, Kenya.

    Google Scholar 

  • Urbach, F., Berger, D., and Davies, R. E., 1974, Field measurements of biologically effective UV radiation and its relation to skin cancer in man, in: Proceedings of the Third Conference on Climatic Impact Assessment Program (A. J. Broderick and T. M. Hard, eds.), U.S. Dept. of Transportation, Washington, DC.

    Google Scholar 

  • U.S. Standard Atmosphere, 1976, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, United States Air Force, Washington, DC.

    Google Scholar 

  • Warneck, P., Marmo, F. F., and Sullivan, J. O., 1964, Ultraviolet absorption of SO2: Dissociation energies of SO2 and SO, J. Chem. Phys. 40:1132–1132.

    Article  CAS  Google Scholar 

  • Wellmann, E., 1985, UV-B-Signal/Response-Beziehungen unter natürlichen und artifiziellen Lichtbedingungen, her. Dtsch. Bot. Ges. 98:99–104.

    Google Scholar 

  • WMO, 1985, Atmospheric Ozone 1985, Global Ozone Research and Monitoring Project—Report No. 16, World Meteorological Organization, Geneva.

    Google Scholar 

  • WMO, 1989, Scientific Assessment of Stratospheric Ozone: 1989, Volume I, Global Ozone Research and Monitoring Project—Report No. 20, World Meteorological Organization, Geneva.

    Google Scholar 

  • WMO, 1991, Scientific Assessment of Ozone Depletion: 1991, Global Ozone Research and Monitoring Project—Report No. 25, World Meteorological Organization, Geneva.

    Google Scholar 

  • Yatsuhashi, H., Hashimoto, T., and Shimizu, S., 1982, Ultraviolet action spectrum for anthocyanin formation in broom sorghum first internodes, Plant Physiol. 70:735–741.

    Article  PubMed  CAS  Google Scholar 

  • Zölzer, F., and Kiefer, J., 1984, Wavelength dependence of inactivation and mutation induction to 6-thioguanine-resistance in V79 Chinese hamster fibroblasts, Photochem. Photobiol. 40: 49–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madronich, S. (1993). The Atmosphere and UV-B Radiation at Ground Level. In: Young, A.R., Moan, J., Björn, L.O., Nultsch, W. (eds) Environmental UV Photobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2406-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2406-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2408-7

  • Online ISBN: 978-1-4899-2406-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics