Skip to main content

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

In 1934 Wigner predicted(1) that the conduction electrons in a metal would undergo a transition from a liquid state to form a crystal when their density was sufficiently reduced. The crystal melts at a critical density for which the Coulomb energy of the configuration and its kinetic energy are comparable. At zero temperature the melting transition is quantal in nature and proceeds via zero-point fluctuations which grow as the density is increased. Another route for the melting is classical in nature and is induced by thermal fluctuations which increase when the temperature is raised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. P. Wigner, Phys. Rev. 46, 1002 (1934).

    Article  ADS  Google Scholar 

  2. C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).

    Article  ADS  Google Scholar 

  3. A. S. Rybalko, B. N. Esselson and Y. Z. Kovdrya, Sov. J. Low Temp. Phys. 5, 450 (1979).

    Google Scholar 

  4. R. Mehrottra, B. M. Guenin, and A. J. Dahm, Phys. Rev. Lett. 48, 641 (1982).

    Article  ADS  Google Scholar 

  5. F. Gallett, G. Deville, A. Valdes, and F. I. B. Williams, Phys. Rev. Lett. 49, 212 (1982).

    Article  ADS  Google Scholar 

  6. G. Deville, A. Valdez, E. Y. Andrei, and F. I. B. Williams, Phys. Rev. Lett. 53, 588 (1984).

    Article  ADS  Google Scholar 

  7. C. D. Glatti, E. Y. Andrei, and F. I. B. Williams, Phys. Rev. Lett. 60, 420 (1988).

    Article  ADS  Google Scholar 

  8. E. Y. Andrei, G. Deville, D. C. Glattli, F. I. B. Williams, E. Paris, and B. Etienne, Phys. Rev. Lett. 60, 2765 (1988)

    Article  ADS  Google Scholar 

  9. D. C. Glattλi, G. Deville, V. Duburcq, F. I. B. Williams, E. Paris, B. Etienne, and E. Y. Andrei, Surf. Sci. 229, 344 (1990).

    Article  ADS  Google Scholar 

  10. R. L. Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. B 38, 7881 (1988).

    Article  ADS  Google Scholar 

  11. H. W. Jiang, R. L. Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 65, 633 (1990).

    Article  ADS  Google Scholar 

  12. F. I. B. Williams, P. A. Wright, R. G. Clark, E. Y. Andrei, G. Deville, D. C. Glattli, O. Probst, B. Etienne, C. Dorin, S. T. Foxon, and J. J. Harris, Phys. Rev. Lett. 66, 3285 (1991).

    Article  ADS  Google Scholar 

  13. F. I. B. Williams, E. Y. Andrei, R. G. Clark, G. Deville, B. Etienne, C. T. Foxon, D. C. Glattli, E. Paris, and P. A. Wright, in: Localization and Confinement of Electrons in Semiconductors, p. 192, Springer-Verlag, Berlin (1990).

    Book  Google Scholar 

  14. R. L. Willett, H. W. Stormer, L. N. Pfeiffer, K. W. West, M. Shayegan, M. Santos, and T. Sajoto, Phys. Rev. B 40, 6432 (1989).

    Article  ADS  Google Scholar 

  15. V. J. Goldman, J. E. Cunningham, M. Shayegan, and M. Santos, Phys. Rev. Lett. 65, 2189 (1990).

    Article  ADS  Google Scholar 

  16. L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1977).

    Article  ADS  Google Scholar 

  17. D. Ceperly, Phys. Rev. B 18, 3126 (1978).

    Article  ADS  Google Scholar 

  18. B. Tanatar and D. Ceperly, Phys. Rev. B 39, 5005 (1989).

    Article  ADS  Google Scholar 

  19. K. Maki and X. Zotos, Phys. Rev. B 38, 4349 (1983).

    Article  ADS  Google Scholar 

  20. P. K. Lam and S. M. Girvin, Phys. Rev. B 30, 483 (1984).

    Article  ADS  Google Scholar 

  21. D. Levesque, J. J. Weiss, and A. H. MacDonald, Phys. Rev. B 30, 1056 (1984).

    Article  ADS  Google Scholar 

  22. Yu. E. Lozovik, V. M. Fartzdinov, and B. Abdullaev, J. Phys. C 18, L807 (1985).

    Article  ADS  Google Scholar 

  23. S. T. Chui, T. M. Hakim, and K. B. Ma, Phys. Rev. B 33, 7110 (1986).

    Article  ADS  Google Scholar 

  24. S. Kivelson, C. Kallin, D. P. Arovas, and J. P. Schrieffer, Phys. Rev. B 36, 1620 (1987).

    Article  ADS  Google Scholar 

  25. K. Esfarhani and S. T. Chui to be published.

    Google Scholar 

  26. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  27. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Article  ADS  Google Scholar 

  28. A. V. Chaplik, Zh. Eksp. Teor. Fiz. 62, 206 (1972).

    Google Scholar 

  29. A. J. Dahm and W. F. Vinen, Physics Today, February (1987).

    Google Scholar 

  30. R. E. Prange and S. M. Girvin (eds.), The Quantum Hall Effect, Springer-Verlag, Berlin (1987).

    Google Scholar 

  31. E. E. Mendez, L. L. Chang, M. Heiblum, Phys. Rev. B 28, 4886 (1983).

    Article  ADS  Google Scholar 

  32. B. Etienne and E. Paris, J. Phys. 48, 2049 (1987).

    Article  Google Scholar 

  33. C. T. Foxon, J. J. Harris, D. Hilton, J. Hewett, and C. Roberts, Semicon. Sci. Tech. 4, 582 (1989).

    Article  ADS  Google Scholar 

  34. G. Grüner and A. Zettl, Phys. Rep. 119, 117 (1985).

    Article  ADS  Google Scholar 

  35. J. C. Gill and H. H. Wills, Contemp. Phys. 27, 37 (1986).

    Article  ADS  Google Scholar 

  36. H. W. Jiang and A. J. Dahm, Phys. Rev. Lett. 62, 1389 (1989).

    Article  ADS  Google Scholar 

  37. Y. Imri and S. Ma, Phys. Rev. Lett. 35, 399 (1975).

    ADS  Google Scholar 

  38. P. A. Lee and M. Rice, Phys. Rev. B 19, 1345 (1979).

    Article  Google Scholar 

  39. H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1978).

    Article  ADS  Google Scholar 

  40. V. J. Goldman, M. Shayegan, and D. C. Tsui, Phys. Rev. Lett. 61, 881 (1988).

    Article  ADS  Google Scholar 

  41. J. R. Mallett, R. G. Clark, R. J. Nicholas, R. Willett, J. J. Harris, and C. T. Foxon, Phys. Rev. B 38, 2200 (1988).

    Article  ADS  Google Scholar 

  42. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  43. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Article  ADS  Google Scholar 

  44. A. P. Young, Phys. Rev. B 19, 1855 (1979).

    Article  ADS  Google Scholar 

  45. S. T. Chui, Phys. Rev. Lett. 48, 933 (1982)

    Article  ADS  Google Scholar 

  46. Y. Saitoh, Phys. Rev. B 26, 6239 (1982).

    Article  ADS  Google Scholar 

  47. T. V. Ramakrishnan, Phys. Rev. Lett. 48, 541 (1982).

    Article  ADS  Google Scholar 

  48. R. Morf, Phys. Rev. Lett. 43, 931 (1979)

    Article  ADS  Google Scholar 

  49. M. Chang and K. Maki, Phys. Rev. B 27, 1646 (1983).

    Article  ADS  Google Scholar 

  50. R. C. Gann, S. Chakravarty, and G. V. Chester, Phys. Rev. B 20, 326 (1979).

    Article  ADS  Google Scholar 

  51. R. Morf, Phys. Rev. Lett. 43, 931 (1979).

    Article  ADS  Google Scholar 

  52. R. K. Kalia, P. Vashishta, and S. W. de Leeuw, Phys. Rev. B 23, 2793 (1981).

    Article  Google Scholar 

  53. Y. P. Li, T. Sajoto, L. W. Engel, D. C. Tsui, and M. Shayegen, Phys Rev. Lett. 67, 1630 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andrei, E.Y., Williams, F.J.B., Glattli, D.C., Deville, G. (1993). Experiments on Two-Dimensional Wigner Crystals. In: Butcher, P., March, N.H., Tosi, M.P. (eds) Physics of Low-Dimensional Semiconductor Structures. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2415-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2415-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2417-9

  • Online ISBN: 978-1-4899-2415-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics