Skip to main content

The Rational Design of Thrombin-Directed Antithrombotics

  • Chapter
The Design of Synthetic Inhibitors of Thrombin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 340))

Abstract

There are few original ideas in Science and for that matter in life in general. Most often, such ideas are the “logical extension” of existing knowledge, practice, or state of the art. Originality might be considered as a form of pathology. That is, the incorrect recall or substitution of an idea or act. But it is the ability to recognize new associations which becomes creativity. In these regards, the imperfect mind creates new ideas and a creative mind must be able to sort out what is new or novel. The term “novel”, however, in Science has acquired the connotation of “subject to consideration of patenting”. Most often, novel ideas constituting inventions, are conceived when the time is correct or the circumstances are right and occur independently to more than one person. Hence, the old adage “necessity is the mother of invention”. If such ideas are good enough, those who have conceived them are frequently overshadowed by those who promote them, and originality becomes the victim of promotion or marketing. Good Science is like any other business or human undertaking; the marketing, promotion, and/or propagation of an idea and its application to a useful purpose are all essential components in the inventive process. Otherwise, the best of ideas are soon forgotten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Magnusson, Thrombin and prothrombin, in: P.D. Boyer, Ed: The Enzymes, 3rd ed, Vol 3, Academic Press, New York, pp. 277 (1971).

    Google Scholar 

  2. S. Magnusson, T.E. Petersen, L. Sottrup-Jensen, and H. Claeys, Complete primary structure of prothrombin: isolation, structure, and reactivity of ten carboxylated glutamic acid residues and regulation of prothrombin activation by thrombin, in: E. Reich, D.B. Rifkin, and E. Shaw, Eds, Proteases and Biological Control, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 123 (1975).

    Google Scholar 

  3. J.W. Fenton II, B.H. Landis, D.H. Bing, R.D. Feinmann, M.P. Zabinski, S.A. Sonder, L.J. Berliner, and J.S. Finlayson, Human Thrombin: preparative evaluation, structural properties and enzymic specificity, in, D.H. Bing, Ed. The Chemistry and Physiology of the Human Plasma Proteins, Pergamon, New York, NY, pp. 151 (1979).

    Google Scholar 

  4. D.H. Bing, R. Laura, D.J. Robison, B. Furie, B.C. Furie, and R.J. Feldmann, A computer-generated three-dimensional model of the B chain of bovine «thrombin, Ann. NY Acad. Sci, 370: 496 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. J.W. Fenton II, Thrombin specificity, Ann. NY Acad. Sci, 370: 468 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. J.W. Fenton II, and D.H. Bing, Thrombin active-site regions, Semin. Thromb. Hemost, 12: 200 (1986).

    Article  CAS  Google Scholar 

  7. B. Furie, D.H. Bing, R.J. Feldmann, D.J. Robison, J.P. Burnier, and B.C. Furie, Computer-generated models of blood coagulation factor Xa, factor IXa, and thrombin based upon structural homology with other serine proteinases, J. Biol. Chem, 57: 3875 (1982).

    Google Scholar 

  8. D.H. Bing, R.J. Feldmann, and J.W. Fenton II, Structure-function relationships of thrombin based on the computer generated three-dimensional model of the B chain of bovine thrombin, Ann. NY Acad. Sci, 485: 104 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. J.W. Fenton II, Thrombin, Ann. NY Acad. Sci, 485: 5 (1986).

    Article  PubMed  Google Scholar 

  10. J.W. Fenton II, Regulation of thrombin generation and functions, Semin. Thromb. Hemost, 14: 234 (1988).

    Article  CAS  Google Scholar 

  11. D. Bagdy, E. Barabas, L. Graf, T.E. Petersen, and S. Magnusson, Hirudin, Methods Enzymol. 45: 669 (1976).

    Article  CAS  Google Scholar 

  12. J. Dodt, H.P. Muller, V. Seemuller, and J.Y. Chang, The complete amino acid sequence of hirudin, a thrombin specific inhibitor, FEBS Lett, 165: 180 (1984).

    Article  CAS  Google Scholar 

  13. J.Y. Chang, The functional domain of hirudin, a thrombin-specific inhibitor, FEBS Lett, 164: 307 (1984).

    Article  Google Scholar 

  14. J. Dodt, V. Seemuller, R. Maschler, and H. Fritz, The complete covalent structure of hirudin, Localization of the disulfide bonds, Biol. Chem. Hoppe-Seyler, 366: 379 (1985).

    Article  CAS  Google Scholar 

  15. J.W. Fenton II, Thrombin interactions with hirudin, Semin. Thromb. Hemost. 15: 265 (1989).

    Article  Google Scholar 

  16. P.H. Johnson, P. Sze, R. Winant, P.W. Payne, and J.B. Lazar, Biochemistry and genetic engineering of hirudin, Semin. Thromb. Hemost. 15: 302 (1989).

    Article  CAS  Google Scholar 

  17. W. Bode, I. Mayr, V. Baumann, R. Huber, S.R. Stone, and J. Hofsteenge, The refined 1.9 A crystal structure of human a-thrombin: interaction with D-PhePro-Arg chloromethyl-methyl ketone and significance of the Tyr-Pro-Pro-Trp insertion segment, EMBO J. 8: 3467 (1989).

    PubMed  CAS  Google Scholar 

  18. T.J. Rydel, K.G. Ravichandraw, A. Tulinsky, W. Bode, R. Huber, C. Roitsch, and J.W. Fenton II, The structure of a complex of recombinant hirudin and human «thrombin, Science, 249: 277 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. M.G. Gruther, J.P. Priestle, J. Rahuel, H. Grossenbacher, W. Bode, J. Hofsteenge, and S.R. Stone, Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition, EMBO J. 9: 2361 (1990).

    Google Scholar 

  20. J.M. Maraganore, P. Bowidon, J. Jablonski, K.L. Ramachandran, and J.W. Fenton II, Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin, Biochemistry, 29: 7095 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. J. DiMaio, B. Gibbs, D. Munn, J. Lefebvre, F. Ni, and Y. Konishi, Bifunctional thrombin inhibitors based on the sequence of hirudin45–65, J. Biol. Chem. 265: 21698 (1990).

    PubMed  CAS  Google Scholar 

  22. V.S. Chauhan, Personal communication, 1990.

    Google Scholar 

  23. J.W. Fenton II, T.A. Olson, M.P. Zabinski, and D.G. Wilner, Anion-binding exosite of human a-thrombin and fibrin(ogen) recognition, Biochemistry, 27: 7106 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. J.L. Krstenansky, and S.J. Mao, Antithrombin properties of C-terminus of hirudin using synthetic unsulfated Na-acetyl-hirudin45–65, FEBS Lett. 211: 10 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. S.J.T. Mao, M.T. Yates, T.J. Owen, and J.L. Krstenansky, Interaction of hirudin with thrombin: identification of a minimal binding domain of hirudin that inhibits clotting activity, Biochemistry 27: 8170 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. J.M. Maraganore, B. Chao, M.L. Joseph, J. Jablonski, and K.L. Ramachandran, Anticoagulant activity of synthetic hirudin peptides, J. Biol. Chem. 264: 8692 (1989).

    PubMed  CAS  Google Scholar 

  27. J.W. Fenton II, J.I. Witting, C. Pouliott, and J. Fareed, Thrombin anion-binding exosite interactions with heparin and various polyanions, Ann. NY Acad. Sci. 556: 158 (1989).

    Article  PubMed  CAS  Google Scholar 

  28. J.I. Witting, J.L. Pouliott, J.L. Catalfamo, J. Fareed, and J.W. Fenton II, Thrombin inhibition with dipeptidyl argininals, Thromb. Res. 50: 461 (1988).

    CAS  Google Scholar 

  29. C. Kettner, and E. Shaw, D-Phe-Pro-ArgCH2C1 - a selective affinity label for thrombin, Thromb. Res. 14: 969 (1979).

    CAS  Google Scholar 

  30. S.A. Sonder, and J.W. Fenton II, Proflavin binding within the fibrinopeptide groove adjacent to the catalytic site of human a-thrombin, Biochemistry 23: 1818 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. J.W. Fenton II, and S.J. Singer, Affinity labelling of antibodies to the p-azophenyltrimethyl-ammonium hapten and a comparison of affinity-labelled antibodies of two different specificities, Biochemistry 10: 1429 (1971).

    Article  PubMed  Google Scholar 

  32. D.H. Bing, M. Cory, and J.W. Fenton II, Exosite affinity labelling of human thrombin. Similar labelling on the A chain and B chain/fragments of clotting nand nonclotting ß-thrombins, J. Biol. Chem. 252: 3587 (1977).

    Google Scholar 

  33. P. Bourdon, J.W. Fenton II, and J.M. Maraganore, Affinity labelling of lysine-149 in the anion binding exosite of human a-thrombin with a N“-dinitro fluorobenzyl-hirudin C-terminal peptide, Biochemistry 29: 6379 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. J. Dodt, S. Kohler, T. Schmitz, and B. Wilhelm, Distinct binding sites of A1a48hirudinl-47 and A1a48-hirudin48–65 on a-thrombin, J.Biol. Chem. 265: 713 (1990).

    CAS  Google Scholar 

  35. J.W. Fenton II, J.I. Witting, P. Bourdon, and J.M. Maraganore, Thrombin-specific inhibition by a novel hirudin analog, Circulation 82:III-659, (abstract) (1990).

    Google Scholar 

  36. J.I. Witting, P. Bourdon, J.M. Maraganore, and J.W. Fenton II, Thrombin-specific inhibition by hirulog-1 and cleavage of its arginyl-3-propyl-4 bond, Thromb. Haemost. 65: 829 (abstract), (1991).

    Google Scholar 

  37. J.M. Maraganore J.W. Fenton II, T. Kline, P. Bourdon, J. Witting, J.A. Jablonski and C. Hammond, Modifications in hirulog peptides yielding improved antithrombin activities, Thromb. Haemost. 65:830 (Abstract).

    Google Scholar 

  38. T. Kline, C. Hammond, P. Bourdon, and J.M. Maraganore, Hirulog peptides with scissile bond replacements resistant to thrombin cleavage, Biochem. Biophys. Res. Commun. 177: 1049 (1991).

    Article  CAS  Google Scholar 

  39. F. Ni, H.A. Scheraga, and S.T. Lord, High-resolution NMR studies of fibrinogen-like peptides in solution: resonance assignments and conformational analysis of residues 1–23 of the A« chain of human fibrinogen, Biochemistry 27: 4481 (1988).

    Article  PubMed  CAS  Google Scholar 

  40. F. Ni, Y. Konishi, R.B. Frazier, H.A. Scheraga, and S.T. Lord, High resolution NMR studies of fibrinogen-like peptides in solution: interaction of thrombin with residues 1–23 of the A« chain of human fibrinogen, Biochemistry 28: 3082 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. F. Ni, Y.C. Meinwald, M. Vasquez, and H.A. Scheraga, High-resolution NMRO studies of fibrinogen-like peptides in solution: structure of a thrombin-bound peptide corresponding to residues 7–16 of the A« chain of human fibrinogen, Biochemistry 28: 3094 (1989).

    Article  PubMed  CAS  Google Scholar 

  42. F. Ni, Y. Konishi, L.D. Bullock, M.N. Rivetna, and H.A. Scheraga, High-resolution NMR studies of fibrinogen-like peptides in solution: structural basis for thebleeding disorder caused by a single mutation of Gly12 to Va112 in the A« chain of human fibrinogen Rouen, Biochemistry 28: 3106 (1989).

    Article  PubMed  CAS  Google Scholar 

  43. F. Ni, Y. Konishi, and H.A. Scheraga, Thrombin-bound conformation of the C-terminal fragments of hirudin determined by transferred nuclear Overhauser effects, Biochemistry 29: 4479 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. J. DiMaio, F. Ni, B. Gibbs, and Y. Konishi, A new class of potent thrombin inhibitors that incorporates a scissile pseudopeptide bond, FEBS Lett. 282: 47 (1991).

    Article  PubMed  CAS  Google Scholar 

  45. T. Lindhout, R.Blezer, and H.C. Hemker, The anticoagulant mechanism of action of recombinant hirudin (CGP 39393) in plasma, Thromb. Haemost. 64: 464 (1990).

    CAS  Google Scholar 

  46. X.J. Yang, M.A. Blajchman, S. Graven, L.M. Smith, N. Anvari, and F.A. Ofosu, Activation of factor V during intrinsic and extrinsic coagulation. Inhibition by heparin, hirudin and D-Phe-Pro-Arg-CH2Cl, Biochem. J. 272: 399 (1990).

    PubMed  CAS  Google Scholar 

  47. D. Gailani, and G.J. Broze Jr, Factor XI activation in a revised model of blood coagulation, Science 253: 909 (1991).

    Article  PubMed  CAS  Google Scholar 

  48. J.W. Fenton II, G.B. Villaneuva, F.A. Ofosu, and J.M. Maraganore, Thrombin inhibition by hirudin: how hirudin inhibits thrombin, Haemostasis 21 (suppl 1): 27 (1991).

    PubMed  CAS  Google Scholar 

  49. F.A. Ofosu, and J.W. Fenton II, Unpublished data.

    Google Scholar 

  50. J.A. Jakubowski, and J.M. Maraganore, Inhibition of coagulation and thrombin-induced platelet activities by a synthetic dodecapeptide modelled on the carboxy-terminus of hirudin, Blood 75: 399 (1990).

    PubMed  CAS  Google Scholar 

  51. M.A.A. DeMichele, D.G. Moon, J.W. Fenton II, and F.L. Minnear, Thrombin’s enzymatic activity increases permeability of endothelial cell monolayers, J. Appl. Physiol. 69: 1599 (1990).

    PubMed  CAS  Google Scholar 

  52. A. Dawson, P. Loynds, K. Findlen, E. Levin, T. Mant, J. Maraganore, D. Hanson, J. Wagner, and I.Fox, Hirulog-1: a bivalent thrombin inhibitor with potent anticoagulant properties in humans, Thromb. Haemostas. 65: 830 (abstract), (1991).

    Google Scholar 

  53. C. Kettner, L. Mersinger, and R. Knabb R, The selective inhibition of thrombin by peptides of boroarginine, J. Biol. Chem. 265: 18289 (1990).

    PubMed  CAS  Google Scholar 

  54. S. Bajusz, E. Barabas, P. Tolnay, E. Szell, and D. Bagdy, Inhibition of thrombin and trypsin by tripeptide aldehydes, Int. J. Pept. Prot. Res. 12: 217 (1978).

    Article  CAS  Google Scholar 

  55. J. Hauptmann, and F. Markwardt, Pharmakologie synthetischer thrombin inhibitoren, Beitrag zur Wirkstoffor-Schung, 26: 1 (1986).

    Google Scholar 

  56. R. Kikumoto, Y. Tamao, T. Tezuka, S. Tonomura, M. Mara, K. Ninomiya, A. Hijikata, and S. Okamoto S, Selective inhibition of thrombin by (2R, 4R)–4methy1–1–1N2–[(3–methyll,2,3,4–tetrahydro–8–quinolinyl) sulfonyl)–L–arginine)12piperidine–carboxylic acid, Biochemistry 23: 85 (1984).

    Article  PubMed  CAS  Google Scholar 

  57. D. Turk, J. Stürzebecher, and W. Bode, Geometry of binding of the No, tosylated piperidides of m-amidino-, p-amidino-and p-guanidino phenylalanine to thrombin and trypsin. X-ray crystal structures of their trypsin complexes and modelling of their thrombin complexes, FEBS Lett. 287: 133 (1991).

    Article  PubMed  CAS  Google Scholar 

  58. S.A. Sonder, and J.W. Fenton II, Thrombin specificity with tripeptide chromo-genic substrates: Comparison of human and bovine thrombins with and without fibrinogen clotting activities, Clin. Chem. 32: 934 (1986).

    CAS  Google Scholar 

  59. R. Bar-Shavit, A. Kahn, M.S. Mudd, G.D. Wilner, K.G. Mann, and J.W. Fenton, Localization of a chemotactic domain in human thrombin, Biochemistry 23: 397 (1984).

    Article  PubMed  CAS  Google Scholar 

  60. S.Y. Yue, J. DiMaio, Z. Szewczuk, E.O. Purisima, F. Ni, and Y. Konishi, Characterization of the interactions of a bifunctionalinhibitor with a-thrombin by molecular modelling and peptide synthesis, Protein Engineering 5: 77 (1992).

    Article  PubMed  CAS  Google Scholar 

  61. Z. Szewczuk, D. Leonard, D. Munn, J. DiMaio, F. Ni, S.Y. Yue, and Y. Konishi, Design of thrombin “exo-site” inhibitors based on structure-activity study, Proc. 12th American Peptide Symposium (abstr.) In press.

    Google Scholar 

  62. F. Ni, D.R. Ripoli, and E.O. Purisima, Conformational stability of a thrombin-binding peptide derived from the hirudin C-terminus, Biochemistry 31: 2445 (1992).

    Google Scholar 

  63. N.C. Cohen, J.M. Blaney, C. Humblett, P. Gund, and D.C. Barry, Molecular modelling software and methods for medicinal chemistry, J. Med. Chem. 33: 883 (1990).

    Article  PubMed  CAS  Google Scholar 

  64. F.C. Church, C.W. Pratt, C.N. Noyes, T. Kalayanamit, G.B. Sherill, R.B. Tobin, and J.B. Meade, Structural and functional properties of human a-thrombin, phosphorylated a-thrombin, and Tr-thrombin. Identification of lysyl residues in a-thrombin that are critical for heparin and fibrin(ogen) interactions, J. Biol. Chem. 264: 18419 (1989).

    PubMed  CAS  Google Scholar 

  65. G.L. Hortin, Sulfation of tyrosine residues in coagulation factor V, Blood 76: 946 (1990).

    PubMed  CAS  Google Scholar 

  66. McD. Horne III, and H.R. Gralnick, The oligosaccharide of human thrombin investigations of functional significance, Blood 63: 188 (1984).

    PubMed  CAS  Google Scholar 

  67. T.A. Olson, S.A. Sonder, G.D. Wilner, and J.W. Fenton II, Heparin binding in proximity to the catalytic site of human a-thrombin, Ann. NY Acad. Sci. 485: 96 (1986).

    Article  PubMed  CAS  Google Scholar 

  68. R. Bar-Shavit, V. Sabbah, M.G. Lampugnani, P.C. Marchisio, J.W. Fenton II, I. Vlodaysky, and E. Dejana, An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion, J. Cell. Biol. 112: 335 (1991).

    Article  PubMed  CAS  Google Scholar 

  69. K.C. Glenn, G.H. Frost, J.S. Bergman, and D.H. Carney, Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis, Peptide Res. 1: 65 (1988).

    CAS  Google Scholar 

  70. V.B. Rasmussen, V. Vouret-Craviai, S. Jallat, Y. Schlesinger, G. Pates, A. Pavirani, J.P. Lecoca, J. Pouyssegur, and E. Van Obberghen-Schilling, cDNA cloning and expression of a hamster a-thrombin receptor coupled to Cat+ mobilization, FEBS Lett. 288: 123 (1991).

    Article  PubMed  CAS  Google Scholar 

  71. T.K.H. Vu, D.T. Hung, V.I. Wheaton, and S.R. Coughlin, Molecular cloning of functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation, Cell 64: 1057 (1991).

    Article  PubMed  CAS  Google Scholar 

  72. J.R. Ngaiza, and E.A. Jaffe, A 14 amino acid peptide derived from the amino terminus of the cleaved thrombin receptor elevates intracellular calcium and stimulates prostacyclin production in human endothelial cells. Biochem. Biophys. Res. Commun. 179: 1661 (1991).

    Article  Google Scholar 

  73. A.B. Malik, and J.W. Fenton II, Thrombin-mediated increase in vascular endothelial permeability, Semin. Thromb. Hemost. 18: 193 (1992).

    Article  CAS  Google Scholar 

  74. J.W. Fenton II, F.A. Ofosu, D.G. Moon, and J.M. Maraganore, Thrombin structure and function: why thrombin is the primary target for antithrombotics, Blood Coagul. Fibrinol. 2: 69 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fenton, J.W., Ni, F., Witting, J.I., Brezniak, D.V., Andersen, T.T., Malik, A.B. (1993). The Rational Design of Thrombin-Directed Antithrombotics. In: Claeson, G., Scully, M.F., Kakkar, V.V., Deadman, J. (eds) The Design of Synthetic Inhibitors of Thrombin. Advances in Experimental Medicine and Biology, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2418-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2418-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2420-9

  • Online ISBN: 978-1-4899-2418-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics