Skip to main content

Spatial Vision in a Flat World: Optical and Neural Adaptations in Arthropods

  • Chapter
Neurobiology of Sensory Systems

Abstract

We review evidence to show that in several arthropod families eyes and supporting neural control systems are shaped according to the spatial layout of their environment Amphibious crabs that live at sandy beaches and mudflats and insects that live above or below the water surface have horizontally aligned acute zones for vertical resolution in those eye regions that look at the horizon. In amphibious crabs acute zones are aligned with the horizon by visual, leg — proprioceptive and statocyst reflexes whereby optokinetic sensitivity to movement around roll and pitch axes reaches a sharp maximum at the eye equator. There is clear evidence of a position dependent mechanism of eye alignment to the horizon in at least two species of flat world crabs. Optokinetic sensitivity to movement around the yaw axis is restricted to the dorsal visual field in flat world crabs and in waterstriders with a maximum just above the eye equator. We discuss the relevance of these specialisations for spatial vision in a flat world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes, R. S. K. 1968, On the evolution of elongated ocular peduncles in the Brachyura, System. Zool., 17: 182–187

    Article  Google Scholar 

  • Brooke, M. de L.; 1981, Size as a factor influencing the ownership of copulation burrows by the ghost crab (Ocypode ceratophthalmus), Z. Tierpsychol., 55: 63–78

    Article  Google Scholar 

  • Burkhardt, D., de la Motte, I. 1983, How stalk-eyed flies eye stalk-eyed flies: Observations and measurements of the eyes of Cyrtodiopsis whitei (Diopsidae, Diptera), J. Comp Physiol., 151: 407–421

    Article  Google Scholar 

  • Collett, T. S., Harkness, L. I. K. 1982, Depth vision in animals, in: “Analysis of Visual Behavior,” D. J. Ingle, M. A. Goodale, R. J. W. Mansfield, eds., M.I.T. Press, Cambridge Mass, London, pp111–177

    Google Scholar 

  • Collett, T. S., Udin, S. B., 1988, Frogs use retinal elevation as a cue to distance, J. Comp. Physiol., A163: 677–683

    Article  Google Scholar 

  • Cooper, M. L., Pettigrew, J. D., 1979, A neurophysiological determination of the vertical horopter in the cat and owl, J. Comp. Neurol., 184: 1–26

    Article  PubMed  CAS  Google Scholar 

  • Dahmen, H.-J., The compound eye of waterstriders (Gems lacustris, Hemiptera), J. Comp. Physiol., (To be submitted)

    Google Scholar 

  • Dahmen, H.-J., Junger, W. 1988, Adaptation to the watersurface: Structural and functional specialisation of the gerrid eye, in: “Sense Organs” (Proc. of the 16th Göttingen Neurobiology Conference),” N. Eisner, F. G. Barth, eds., G. Thieme, Stuttgart New York, p233

    Google Scholar 

  • Hagen, H. O. v., 1970, Zur Deutung langstieliger und gehörnter Augen bei Ocypodiden (Decapoda, Brachyura), forma et functio, 2: 13–57

    Google Scholar 

  • Horridge, G. A., 1978, The separation of visual axes in apposition compound eyes, Phil. Trans. Roy. Soc. Lond., B285: 1–59

    Google Scholar 

  • Hughes, A., 1977, The topography of vision in mammals, in: Handb. Sens. Physiol., Vol. VII/5,′ F. Crescitelli, ed., Springer, Berlin Heidelberg New York, pp 613–756

    Google Scholar 

  • Junger, W., Dahmen, H.-J., 1988, Waterstriders (Gerridae) use visual landmarks to compensate for drift on a moving water surface, in: “Sense Organs” (Proc. of the 16th Göttingen Neurobiology Conference),” N. Eisner, F. G. Barth, eds., G. Thieme, Stuttgart New York, p35

    Google Scholar 

  • Kunze, P., 1963, Der Einfluß der Größe bewegter Felder auf den optokineti — schen Augennystagmus der Winkerkrabbe (Uca pugnax), Ergeb. Biol., 26:55–62

    Google Scholar 

  • Kunze, P., 1964, Eye—stalk reactions of the ghost crab Ocypode, in: “Neural theory and modelling,” R. F. Reiss, ed., Stanford Univ Press, Stanford California, pp293–305

    Google Scholar 

  • Land, M. F., 1981, Optics and vision in invertebrates, in: “Comparative physiology and evolution of vision in invertebrates. (Handb of Sens Physiol., Vol. VII/6B),” H. Autrum, ed., Springer, Berlin Heidelberg New York, pp 471–592

    Chapter  Google Scholar 

  • Lighter, F. J., 1974, A note on the behavioural spacing mechanism of the ghost crab Ocypode ceratophthalmus (Pallas) (Decapoda, Family Ocypodidae), Crustaceana, 27: 312–314

    Article  Google Scholar 

  • Linsenmair, K. E., 1967, Konstruktion und Signalfunktion der Sandpyramide der Reiterkrabbe Ocypode saratan Forsk. (Decapoda, Brachyura, Ocypodidae), Z. Tierpsychol, 24: 403–456

    Article  PubMed  CAS  Google Scholar 

  • Murphey, R. K., 1971, Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis, Z. vergl. Physiol. 72: 168–185

    Article  Google Scholar 

  • Nalbach, H.-O., Nalbach, G., 1987, Distribution of optokinetic sensitivity over the eye of crabs: its relation to habitat and possible role in flow-field analysis, J. Comp. Physiol., A160: 127–135

    Article  Google Scholar 

  • Nalbach, H.-O., Nalbach, G., Forzin, L., (a), Multisensory control of eye stalk orientation in space. II. Visual system and eye design, J. Comp. Physiol., (in preparation)

    Google Scholar 

  • Nalbach, H.-O., Zeil, J., Forzin, L., (b), Multisensory control of eye stalk orientation in space. I. Crabs from different habitats rely on different senses, J. Comp. Physiol., (in preparation)

    Google Scholar 

  • Neil, D. M., 1982, Compensatory eye movements, in: “Biology of the Crustacea, Vol. IV,” H. L. Atwood, D. C. Sandeman, eds., Academic Press, NewYork, pp133–163

    Google Scholar 

  • Sandeman, D. C., 1978, Eye-scanning during walking in the crab Leptograpsus variegatus, J. Comp. Physiol., 124: 249–257

    Article  Google Scholar 

  • Salmon, M., Hyatt, G. W., 1983, Communication, in: “The biology of Crustacea Vol. 7: Behavior and ecology,” F. J. Vernberg, W. G. Vernberg, eds., Academic Press, New York London, pp1–40

    Google Scholar 

  • Schaller, F., 1953, Verhaltens-und sinnesphysiologische Beobachtungen an Squilla mantis, Z. Tierpsychol., 10: 1–12

    Google Scholar 

  • Schneider, L., Langer, H., 1969, Die Struktur des Rhabdoms im ‘Doppelauge’ des Wasserläufers Gerris lacustris, Z. Zellforsch., 99: 538–559

    Article  PubMed  CAS  Google Scholar 

  • Schwind, R., 1978, Visual system of Notonecta glauca: A neuron sensitive to movement in the binocular visual field, J. Comp. Physiol., 123: 315–328

    Article  Google Scholar 

  • Schwind, R., 1980, Geometrical optics of the Notonecta eye: Adaptations to optical environment and way of life, J. Comp. Physiol., 140: 59–68

    Article  Google Scholar 

  • Stavenga, D. G., 1979, Pseudopupils of compound eyes, in: “Handb. Sens. Physiol. Vol. VII/6A,” H. Autrum, ed., Springer, Berlin Heidelberg New York, pp357–439

    Google Scholar 

  • Yamaguchi, T., Noguchi, Y., Ogawara, N., 1979, Studies of the courtship behavior and copulation of the sand bubbler crab, Scopimera globosa, Publ. Amakusa. Mar. Biol. Lab., 5: 31–44

    Google Scholar 

  • Zeil, J., Nalbach, G., Nalbach, H.-O., 1986, Eyes, eye stalks and the visual world of semi-terrestrial crabs, J. Comp. Physiol., A159: 801–811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zeil, J., Nalbach, G., Nalbach, HO. (1989). Spatial Vision in a Flat World: Optical and Neural Adaptations in Arthropods. In: Singh, R.N., Strausfeld, N.J. (eds) Neurobiology of Sensory Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2519-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2519-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2521-3

  • Online ISBN: 978-1-4899-2519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics