Skip to main content

Diffusion-Limited Aggregation: Recent Developments

  • Chapter
Fractals’ Physical Origin and Properties

Part of the book series: Ettore Majorana International Science Series ((EMISS))

Abstract

The development of the diffusion-limited aggregation (DLA) model by Witten and Sander1 has stimulated interest in a broad range of non-equilibrium growth and aggregation processes (see references 2–12 for recent books, reviews and conference proceedings). Since that time a wide range of physical realizations of the DLA model has been found including fluid-fluid displacement13 in Hele-Shaw cells14 and porous media15, dielectric breakdown16, electrodeposition17,18 and the dissolution of porous materials19. Brief surveys of these and other applications can be found in references 9 and 20. A variety of theoretical approaches including mean field theories21–24 and position space renormalization models25,26 have been applied to the DLA process. Recently, a variety of promising new ideas have been applied to DLA26–31 and closely related models.32 Despite these advances, we still do not have a widely accepted general theory for DLA though a quite successful theory for noise reduced DLA has been developed.32

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47:1400 (1981).

    Article  CAS  Google Scholar 

  2. J. Feder, Fractals, Plenum Press, New York (1988).

    Book  Google Scholar 

  3. K. Honda, “Fractals in Physics”, Osakura Shoten (1987).

    Google Scholar 

  4. R. Jullien and R. Botet, “Aggregation and Fractal Aggregates”, World Scientific, Singapore (1986).

    Google Scholar 

  5. F. Family and D. P. Landau, eds., “Kinetics of Aggregation and Gelation”, North Holland, Amsterdam (1984).

    Google Scholar 

  6. H. E. Stanley and N. Ostrowsky, eds. “On Growth and Form: Fractal and Non-fractal Patterns in Physics”, NATO ASI Series E100, Martinus Nijhoff, Dordrecht (1986).

    Google Scholar 

  7. L. Pietronero and E. Tosatti, eds., “Fractals in Physics”, Proceedings of Sixth International Symposium on Fractals in Physics, ICTP, Trieste, Italy. North Holland, Amsterdam (1986).

    Google Scholar 

  8. H. J. Herrmann, Physics Reports, 136:153 (1986).

    Article  CAS  Google Scholar 

  9. P. Meakin in “Phase Transitions and Critical Phenomena”, C. Domb and J. L. Lebowitz, eds., Vol. 12, p. 335, Academic Press, New York (1988).

    Google Scholar 

  10. P. Meakin, Advances in Colloid and Interface Science, 28:249 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. R. Pynn and A. T. Skjeltorp, eds., “Scaling Phenomena in Disordered Systems”, NATO ASI Series B133, Plenum Press, New York (1986).

    Google Scholar 

  12. T. Riste and R. Pynn, eds., “Time Dependent Effects in Disordered Materials”, NATO ASI Series B167, Plenum Press, New York (1987).

    Google Scholar 

  13. L. Paterson, Phys. Rev Lett. 52:1621 (1984).

    Article  CAS  Google Scholar 

  14. J. Nittmann, G. Daccord and H. E. Stanley, Nature, 314:141 (1985).

    Article  CAS  Google Scholar 

  15. K. J. Maloy, J. Feder and T. Jossang, Phys. Rev. Lett. 55:2688 (1985).

    Article  Google Scholar 

  16. L. Niemeyer, L. Pietronero and H. J. Wiesmann, Phys. Rev. Lett. 52:1033 (1984).

    Article  Google Scholar 

  17. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo and Y. Sawada, Phys. Rev. Lett. 53:286 (1984).

    Article  CAS  Google Scholar 

  18. R. M. Brady and R. C. Ball, Nature 309:255 (1984).

    Article  Google Scholar 

  19. G. Daccord and R. Lenormand, Nature 325:41 (1987).

    Article  CAS  Google Scholar 

  20. R. C. Ball in ref. 6, page 69.

    Google Scholar 

  21. M. Muthukumar, Phys. Rev. Lett. 50:839 (1983).

    Article  CAS  Google Scholar 

  22. M. Tokayama and K. Kawasaki, Phys. Lett. 100A:337 (1984).

    Article  Google Scholar 

  23. H. G. E. Hentschel, Phys. Rev. Lett. 52:212 (1984).

    Article  Google Scholar 

  24. K. Honda, H. Toyoki and M. Matsushita, J. Phys. Soc. Japan, 55:2479 (1986).

    Article  Google Scholar 

  25. H. Gould, F. Family and H. E. Stanley, Phys. Rev. Lett. 50:686 (1983).

    Article  Google Scholar 

  26. L. Pietronero, A. Erzan and C. Evertsz, Phys. Rev. Lett. 61:861 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. L. Turkevich and H. Scher, Phys. Rev. Lett. 55:1026 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. R. C. Ball, R. M. Brady, C. Rossi and B. R. Thompson, Phys. Rev. Lett. 55:1406 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. T. C. Halsey, P. Meakin and I. Procaccia, Phys. Rev. Lett. 56:854 (1986).

    Article  PubMed  CAS  Google Scholar 

  30. I. Procaccia and R. Zeitak, Phys. Rev. Lett. 60:2511 (1988).

    Article  PubMed  Google Scholar 

  31. T. Bohr, P. Cvitanovic and M. H. Jensen, preprint (1988).

    Google Scholar 

  32. J. P. Eckmann, P. Meakin, I. Procaccia and R. Zeitak, preprint (I988).

    Google Scholar 

  33. P. Meakin, Phys. Rev. A27: 604, 1495 (1983).

    Article  Google Scholar 

  34. P. Meakin, J. Phys. A18:L661 1985).

    Google Scholar 

  35. R. C. Ball and R. M. Brady, J. Phys. A18: L809 (1985).

    Google Scholar 

  36. S. Tolman and P. Meakin, preprint (1988).

    Google Scholar 

  37. P. Meakin, unpublished.

    Google Scholar 

  38. P. Meakin and L. M. Sander, unpublished.

    Google Scholar 

  39. B. B. Mandelbrot “The Fractal Geometry of Nature” W. H. Freeman and Company, New York (1982).

    Google Scholar 

  40. T. A. Witten and L M. Sander, Phys. Rev. B27:5686 (1983).

    Article  Google Scholar 

  41. P. Meakin and Z. R. Wasserman, Chemical Physics 91:391 (1984).

    Article  CAS  Google Scholar 

  42. H. G. E. Hentschel and I. Procaccia, Physica D8:835 (1983).

    Google Scholar 

  43. T. A. Witten, J. Poly. Sci., Polymer Symposium 73:7 (1985).

    Article  CAS  Google Scholar 

  44. M. Plischke and Z. Racz, Phys. Rev. Lett. 53:415, 2053 (1985).

    Article  Google Scholar 

  45. P. Meakin and L. M. Sander, Phys. Rev. Lett. 54:2053 (1985).

    Article  PubMed  Google Scholar 

  46. P. Meakin and T. Vicsek, Phys. Rev. A32:685 (1985).

    Article  Google Scholar 

  47. M. Kolb, J. Phys. Lett. 46: L631 (1985).

    Article  Google Scholar 

  48. P. Meakin, R. C. Ball, P. Ramanlal and L. M. Sander, Phys. Rev. A35:5233 (1987).

    Article  Google Scholar 

  49. P. Meakin, Phys. Rev. A33:3371 (1986).

    Article  Google Scholar 

  50. C. T. Tang, Phys. Rev. A31:1977 (1985).

    Article  Google Scholar 

  51. J. Kertesz and T. Viscek, J. Phys. A19:L257 (1986).

    Google Scholar 

  52. B. R. Thompson, unpublished.

    Google Scholar 

  53. J. Nittmann and H. E. Stanley, Nature 321:663 (1986).

    Article  Google Scholar 

  54. P. Meakin, Phys. Rev. A36:332 (1987).

    Article  Google Scholar 

  55. P. Meakin and S. Havlin, Phys. Rev. A36:4428 (1987).

    Article  Google Scholar 

  56. P. A. Rickvold, Phys. Rev. B26:674 (1982).

    Google Scholar 

  57. P. Meakin, Phys. Rev. B28:6718 (1983).

    Article  Google Scholar 

  58. P. Meakin, Phys. Lett. 107A:269 (1985).

    Article  Google Scholar 

  59. R. Botet, R. Jullien and M. Kolb, J. Phys. A17:L75 (1984).

    Google Scholar 

  60. P. Meakin, Phys. Rev. Lett. 51:1119(1983).

    Article  Google Scholar 

  61. M. Kolb, R. Botet and R. Jullien, Phys. Rev. Lett. 51:1123 (1983).

    Article  Google Scholar 

  62. F. Argoul, A. Arneodo, G. Grasseau and H. L. Swinney, Phys. Rev. Lett. 61:2558 (1988).

    Article  PubMed  CAS  Google Scholar 

  63. P. Ramanlal and L. M. Sander, J. Phys. A21:L995 (1988).

    Google Scholar 

  64. E. L. Hinrichsen, K. J. Maloy, J. Feder and T. Jossang, preprint.

    Google Scholar 

  65. R. E. Horton, Geol. Soc. Am. Bull 56:275 (1945).

    Article  Google Scholar 

  66. T. C. Halsey and P. Meakin, Phys. Rev. A 32:2546 (1985).

    Article  PubMed  Google Scholar 

  67. L. A. Turkevich and H. Scher, Phys. Rev. A33:786 (1986).

    Article  Google Scholar 

  68. R. C. Ball and T. A. Witten, Phys. Rev. A 29:2966 (1984).

    Article  Google Scholar 

  69. R. C. Ball and T. A. Witten, J. Stat Phys. 36:873 (1984).

    Article  Google Scholar 

  70. P. Meakin, J. Theor. Biol. 118:101 (1986).

    Article  PubMed  CAS  Google Scholar 

  71. I. M. Dudkin, I. Rabinovich and I. Vokhutinsky, “Iterative Aggregation Theory”, Marcel Dekker, New York (1987).

    Google Scholar 

  72. D. M. de G. Allen “Relaxation Methods” McGraw Hill, New York (1954).

    Google Scholar 

  73. M. Matsushita, K. Honda, H. Toyoki, Y. Hayakawa and H. Kondo, J. Phys. Soc. Japan 55:2618 (1986).

    Article  CAS  Google Scholar 

  74. Y. Hayakawa, H. Kondo and M. Matsushita, J. Phys. Soc. Japan 55:2479 (1986).

    Article  CAS  Google Scholar 

  75. L. Pietronero and H. J. Wiesmann, J. Stat. Phys. 36:909 (1984).

    Article  Google Scholar 

  76. H. J. Wiesmann and L. Pietronero in ref. 7, p. 151.

    Google Scholar 

  77. S. Satpathy, Phys. Rev. B 33:5093 (1986).

    Article  Google Scholar 

  78. P. Meakin, Phys. Rev. A33:4199 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meakin, P., Tolman, S. (1989). Diffusion-Limited Aggregation: Recent Developments. In: Pietronero, L. (eds) Fractals’ Physical Origin and Properties. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3499-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3499-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3501-4

  • Online ISBN: 978-1-4899-3499-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics