Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 285))

Abstract

Quantum heterostructures have evolved over the last two decades to become a prominant, multi-disciplinary field in Condensed matter science. We provide, in this work, an overview of both the materials and physics aspects. Structure processing in terms of deposition and characterizatiuon is described. The introduction of a heterostructure potential is shown to resuit in fundamental modifications of the materials, leading to prescribed electronic properties. The most extensively studied System of GaAs-AlAs is used for this illustration. Other heterostructure systems are discussed to the extent that they exhibit specific features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki and R. Tsu, “Superlattice and Negative Differential Conductivity in Semiconductors,” IBM. J. Res. Develop. 14, 61 (1970).

    Article  Google Scholar 

  2. L. L. Chang, L. Esaki, W. E. Howard and R. Ludeke, “The Growth of a GaAs-GaAlAs Superlattice,” J. Vac. Sci. Technol. 10, 11 (1973).

    Article  Google Scholar 

  3. L. L. Chang, L. Esaki and R. Tsu, “Resonant Tunneling in Semiconductor Double Barriers,” Appl. Phys. Lett. 24, 593 (1974).

    Article  Google Scholar 

  4. L. Esaki and L. L. Chang, “Semiconductor Superfine Structures by Computer Controlled Molecular Beam Epitaxy,” Thin Solid Films 36, 285 (1976).

    Article  Google Scholar 

  5. L. L. Chang and L. Esaki, “Semiconductor Superlattices by MBE and Their Characterization,” Prog. Crystal Growth and Characterization, 2, 3 (1979).

    Article  Google Scholar 

  6. L. L. Chang, “Recent Advances in Semiconductor Superlattices,” J. Vac. Sci. Technol. B1, 152 (1983).

    Google Scholar 

  7. L. L. Chang and E. E. Mendez, “Compositionally Modulated Superlattices,” in Synthetic Modulated Structures, ed. by L. L. Chang and B. C. Giessen (Academic Press, New York, 1985), p. 113.

    Chapter  Google Scholar 

  8. L. L. Chang, “A Perspective of the Development of Semiconductor Superlattices and Quantum Wells,” in Lattice Dynamics and Semiconductor Physics. ed. by J. B. Xia et al, (World Scientific, Singapore, 1990), p. 335.

    Google Scholar 

  9. J. R. Arthur, “Surface Stoichiometry and Structure of GaAs,” Surf. Sci. 43, 449 (1974).

    Article  Google Scholar 

  10. C. T. Foxon and B. A. Joyce, “Interaction Kinetics of As4 and Ga on (100) GaAs Surfaces Using a Modulated Molecular Beam Technique,” Surf. Sci. 50, 434 (1975).

    Article  Google Scholar 

  11. B. A. Joyce, “Kinetic and Surface Aspects of MBE,” in Molecular Beam Epitaxy and Heterostructures, ed. by L. L. Chang and K. Ploog (Martinus Nijhoff, Dordrecht, 1985), p. 37.

    Chapter  Google Scholar 

  12. D. B. Dove, R. Ludeke and L. L. Chang, “Interpretation of Scanning High-Energy Electron Diffraction Measurements with Application to GaAs Surfaces,” J. Appl. Phys. 44, 1897 (1973).

    Article  Google Scholar 

  13. A. Y. Cho, “Morphology of Epitaxial Growth of GaAs by a Molecular Beam Method:The Observation of Surface Structures,” J. Appl. Phys. 41, 2780 (1970).

    Article  Google Scholar 

  14. S. M. Newstead, R. A. A. Kubiak and E. H. C. Parker, “On the Practical Applications of MBE Surface Phase Diagrams,” J. Crystal Growth 81, 49 (1987).

    Article  Google Scholar 

  15. C.A. Chang, R. Ludeke, L. L. Chang and L. Esaki, “Molecular Beam Epitaxy of InGaAs and GaSbAs,” Appl. Phys. Lett. 31, 759 (1977).

    Article  Google Scholar 

  16. J. J. Harris, B. A. Joyce and P. J. Dobson, “Oscillations in the Surface Structure of Sn-Doped GaAs during Growth by MBE,” Surf. Sci. 103, L90 (1981).

    Article  Google Scholar 

  17. P. J. Dobson, B. A. Joyce, J. H. Neave and J. Zhang, “Current Understanding and Applications of the RHEED Intensity Oscillation Technique,” J. Crys. Growth, 81, 1 (1987).

    Article  Google Scholar 

  18. L. L. Chang and A. Koma, “Interdiffusion Between GaAs and AlAs,” Appl. Phys. Lett. 29, 138 (1976).

    Article  Google Scholar 

  19. R. Ludeke, L. Esaki and L. L. Chang, “GaAlAs Superlattices Profiled by Auger Electron Spectroscopy,” Appl. Phys. Lett. 24, 417 (1974).

    Article  Google Scholar 

  20. L. L. Chang, A. Segmuller and L. Esaki, “Smooth and Coherent Layers of GaAs and AlAs Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 28, 39 (1976).

    Article  Google Scholar 

  21. P. M. Petroff, “Transmission Electron Microscopy of Interfaces in III-V Compound Semiconductors,” J. Vac. Sci. Technol. 14, 973 (1977).

    Article  Google Scholar 

  22. H. Okamoto, M. Seki and Y. Horikoshi, “Direct Observation of Lattice Arrangement in MBE Grown GaAs-AlGaAs Superlattices,” Jpn. J. Appl. Phys. 22, L367 (1983).

    Article  Google Scholar 

  23. M. Tanaka, H. Ichinose, T. Fututa, Y. Ishida and H. Sakaki, “Direct Observation of Atomic Step Structure at GaAs-AlAs Heterointerfaces in Transmission Electron Microscopy and Improved Lattice Image to Detect Interface by Material-Dependent Patterns,” J. Physique C5, 101 (1987).

    Google Scholar 

  24. C. Weisbuch, R. Dingle, A. C. Gossard and W. Wiegmann “Optical Characterization of Interface Disorder in GaAs-GaAlAs MultiQuantum Well Structures,” Solid State Commun. 38, 709 (1981).

    Article  Google Scholar 

  25. H. Sakaki, M. Tanaka and J. Yoshino, “One Atomic Layer Heterointerface Fluctuations in GaAs-AlAs Quantum Well Structures and Their Suppression by Insertion of Smoothing Period in Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 24, L417 (1985).

    Article  Google Scholar 

  26. Y. Horikoshi, M. Kawashima and H. Yamaguchi, “Low-Temperature Growth of GaAs and AlAs-GaAs Quantum-Well Layers by Modulated Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 25, L868(1986).

    Article  Google Scholar 

  27. H. M. Manasevit, “Single-Crystal Gallium Arsenide on Insulating Substrates,” Appl. Phys. Lett. 12, 156 (1968).

    Article  Google Scholar 

  28. J. P. Duchemin, S. Hersee, M. Razeghi and M. A. Poisson, “Metal Organic Chemical Vapor Deposition” in Molecular Beam Epitaxy and Heterostructures, ed. by L. L. Chang and K. Ploog, (Martinus Nihoff, Dordrecht, 1985) p. 677.

    Chapter  Google Scholar 

  29. M. B. Panish, “Molecular Beam Epitaxy of GaAs and InP with Gas Source for As and P,” J. Electrochem. Soc. 127, 2729 (1980).

    Article  Google Scholar 

  30. E. Venhoff, W. Pletschen, P. Balk and H. Luth, “Metalorganic CVD of GaAs in a Molecular Beam System,” J. Crystal Growth 55, 30(1981).

    Article  Google Scholar 

  31. E. Tokumitsu, Y. Kudou, M. Konagai and K. Takahashi, “Molecular Beam Epitaxial Growth of GaAs Using Trimethylgallium as a Ga Source,” J. Appl. Phys. 55, 3163 (1984).

    Article  Google Scholar 

  32. W. T. Tsang, “Chemical Beam Epitaxy of InP and GaAs,” Appl. Phys. Lett. 45, 1234(1984).

    Article  Google Scholar 

  33. J. Luryi, “Frequency Limit of Double-Barrier Resonant-Tunneling Oscillators,” Appl. Phys. Lett. 47, 490 (1985).

    Article  Google Scholar 

  34. S. Y. Chou, D. R. Allee, J. S. Harris and R. F. W. Pease, “Observation of Electron Resonant Tunneling in a Lateral Dual-Gate Resonant Tunneling Field-Effect Transistor,” Appl. Phys. Lett. 55, 176 (1989).

    Article  Google Scholar 

  35. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore and A. E. Wetsel, “Observation of Discrete Electronic States in a Zero-Dimensional Semiconductor Nanostructure” Phys. Rev. Lett. 60, 535 (1988).

    Article  Google Scholar 

  36. R. Dingle, W. Wiegmann and C. H. Henry, “Quantum States of Confined Carriers in Very Thin AlGaAs-GaAs-AlGaAs Heterostructures,” Phys. Rev. Lett. 33, 827 (1974).

    Article  Google Scholar 

  37. C. Weisbuch, R. C. Miller, R. Dingle, A. C. Gossard and W. Wiegmann, “Intrinsic Radiative Recombination from Quantum States in GaAs-AlGaAs Multiquantum Well Structures,” Solid State Commun. 37, 219 (1981).

    Article  Google Scholar 

  38. R. C. Miller, A. C. Gossard, G. D. Sanders, Y. C. Chang and J. N. Schulman, “New Evidence of Extensive Valence-Band Mixing in GaAs Quantum Wells through Excitation Photoluminescence Studies,” Phys. Rev. B32, 8452 (1985).

    Article  Google Scholar 

  39. G. Abstreiter and K. Ploog, “Inelastic Light Scattering from a Quasi-Two-Dimensional Electron System in GaAs-AlGaAs Heterojunctions,” Phys. Rev. Lett. 42, 1308 (1979).

    Article  Google Scholar 

  40. E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki and F. H. Pollak, “Observation of Superlattice Effects on the Electronic Bands of Multilayer Heterostructures,” Phys. Rev. Lett. 46, 1230(1981).

    Article  Google Scholar 

  41. L. L. Chang, H. Sakaki, C. A. Chang and L. Esaki, “Shubnikov-de Haas Oscillations in a Semiconductor Superlattice,” Phys. Rev. Lett. 38, 1489 (1977).

    Article  Google Scholar 

  42. D. C. Tsui, Th. Englert, A. Y. Cho and A. C. Gossard, “Observation of Magnetophonon Resonances in a Two-Dimensional Electronic System,” Phys. Rev. Lett. 44, 341 (1980).

    Article  Google Scholar 

  43. J. C. Maan, G. Belle, A. Fasolino, M. Altarelli and K. Ploog, “Magneto-Optical Determination of Exciton Binding Energy in GaAs-Ga1-xAlxAs Quantum Wells,” Phys. Rev. B30, 2253 (1984).

    Article  MathSciNet  Google Scholar 

  44. H. L. Stornier, R. Dingle, A. C. Gossard, W. Wiegmann and M. D. Sturge, “Two-Dimensional Electron Gas at a Semiconductor-Semiconductor Interface,” Solid State Commun. 29, 705 (1979).

    Article  Google Scholar 

  45. K. von Klitzing, G. Dorda and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,” Phys. Rev. Lett. 45, 494 (1980).

    Article  Google Scholar 

  46. D. C. Tsui, H. L. Stormer and A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme Quantum Limit,” Phys. Rev. Lett. 48, 1559 (1982).

    Article  Google Scholar 

  47. G. Bastard, “Hydrogenic Impurity States in a Quantum Well: A Single Model,” Phys. Rev. B24, 4714 (1981).

    Article  Google Scholar 

  48. R. C. Miller, A. C. Gossard, W. T. Tsang and O. Munteanu, “Extrinsic Photoluminescence from GaAs Quantum Wells,” Phys. Rev.B25, 3871 (1982).

    Article  Google Scholar 

  49. W. T. Masselink, Y. C. Chang and H. Morkoc, “Binding Energies of Acceptors in GaAs-AlxGa1-xAs Quantum Wells,” Phys. Rev. B28, 7373 (1983).

    Article  Google Scholar 

  50. B. V. Shanabrook, “The Properties of Hydrogenic Donors Confined in GaAs-AlGaAs Multiple Quantum Wells,” Surf. Sci. 170, 449 (1986).

    Article  Google Scholar 

  51. R. C. Miller, D. A. Kleinman, W. T. Tsang and A. C. Gossard, “Observation of the Excited Level of Excitons in GaAs Quantum Wells,” Phys. Rev. B24, 1134 (1981).

    Article  Google Scholar 

  52. E. S. Koteles and J. Y. Chi, “Experimental Exciton Binding Energies in GaAs/AlxGa1-xAs Quantum Wells as a Function of Well Width,” Phys. Rev. B37, 6332 (1988).

    Article  Google Scholar 

  53. F. Agullo-Rueda, J. A. Brum, E. E. Mendez and J. M. Hong, “Change in Dimensionality of Superlattice Excitons Induced by an Electric Field,” Phys. Rev. B41, 1676 (1990).

    Article  Google Scholar 

  54. C. Covard, R. Merlin, M. V. Klein and A. C. Gossard, “Observation of Folded Acoustic Phonons in a Semiconductor Superlattice,” Phys. Rev. Lett. 45, 298 (1980).

    Article  Google Scholar 

  55. B. Jusserand, D. Paque and A. Regvency, “Folded Optical Phonons in GaAs/Ga1_xAlxAs Superlattices,” Phys. Rev. B30, 6245 (1984).

    Article  Google Scholar 

  56. A. K. Sood, J. Menendez, M. Cardona and K. Ploog, “Interface Vibrational Modes in GaAs-AlAs Superlattices,” Phys. Rev. Lett. 54, 2115(1985).

    Article  Google Scholar 

  57. B. Jusserand and D. Paque, “Confined and Propagative Vibrations in Superlattices,” in Heterojunctions and Semiconductor Superlattices, ed. by G. Allan, G. Bastard, N. Boccara, M. Lannoo and M. Voos (Springer-Verlag, Berlin, 1986). p. 108.

    Chapter  Google Scholar 

  58. K. Huang and B. Z. Zhu, “Dielectric Continuum Model and Frohlich Interaction in Superlattices,” Phys. Rev. B38, 13377 (1988).

    Article  Google Scholar 

  59. R. Dingle, H. L. Stornier, A. C. Gossard and W. Wigmann, “Electron Mobilities in Modulation-Doped Semiconductor Heterojunction Superlattices,” Appl. Phys. Lett. 33, 665 (1978).

    Article  Google Scholar 

  60. L. C. Witkowski, T. J. Drummond, C. M. Stanchak and H. Morkoc, “High Mobilities in AlxGa1-xAs-GaAs Heterojunctions,” Appl. Phys. Lett. 37, 1033 (1980).

    Article  Google Scholar 

  61. J. J. Harris, C. T. Foxon, K. W. Barnham, D. E. Lacklison, J. Hewett and C. White, “Two-Dimensional Electron Gas Structures With Mobilities in Excess of 3×l06 cm2/v.sec,” J. Appl. Phys. 61, 1219(1987).

    Article  Google Scholar 

  62. L. Pfeiffer, K. W. West, H. L. Stormer and K. W. Baldwin, “Electron Mobilities Exceeding 107cm2/v.sec in Modulation-Doped GaAs,” Appl. Phys. Lett. 55, 1888 (1989).

    Article  Google Scholar 

  63. T. Mimura, S. Hiyamizu, T. Fujii and K. Nambu, “A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions,” Jpn. J. Appl. Phys. 19, L225 (1980).

    Article  Google Scholar 

  64. H. Sakaki, L. L. Chang, R. Ludeke, C. A. Chang, G. A. Sai-Halasz and L. Esaki, “InGaAs-GaSbAs Heterojunctions by Molecular Beam Epitaxy,” Appl. Phys. Lett. 31, 211 (1977).

    Article  Google Scholar 

  65. L. L. Chang and L. Esaki, “Electronic Properties of InAs-GaSb Superlattices,” Surf. Sci. 98, 70 (1980).

    Article  Google Scholar 

  66. J. N. Schulman and T. C. McGill, “The CdTe/HgTe Superlattice: Proposai for a New Infrared Material,” Appl. Phys. Lett. 34, 663 (1979).

    Article  Google Scholar 

  67. M. Voos, “The Physics of Hg-Based Heterostructures” in Band Structure Engineering in Semiconductor Microstructures, ed. by R. A. Ahram and M. Jaros (Plenum Press, New York, 1988) p. 61.

    Google Scholar 

  68. L. L. Chang, G. A. Sai-Halasz, L. Esaki and R. L. Aggarwal, “Spatial Separation of Carriers in InAs-GaSb Superlattices,” J. Vac. Sci. Technol. 19, 589 (1981).

    Article  Google Scholar 

  69. L. L. Chang, N. J. Kawai, G. A. Sai-Halasz, R. Ludeke and L. Esaki, “Observation of Semiconductor-Semimetal Transition in InAs-GaSb Superlattices,” Appl. Phys. Lett. 35, 939 (1979).

    Article  Google Scholar 

  70. L. L. Chang, N. J. Kawai, E. E. Mendez, C. A. Chang and L. Esaki, “Semimetallic InAs-GaSb Superlattices to the Heterojunction Limit,” Appl. Phys. Lett. 38, 30 (1981).

    Article  Google Scholar 

  71. M. Altarelli, “Electronic Structure and Semiconductor-Semimetal Transitions in InAs-GaSb Superlattices,” Phys. Rev. B28, 842 (1983).

    Article  Google Scholar 

  72. E. E. Mendez, L. Esaki and L. L. Chang, “Quantum Hall Effect in Two-Dimensional Electron-Hole Gas,” Phys. Rev. Lett. 55, 2216 (1985).

    Article  Google Scholar 

  73. H. Munekata, T. P. Smith, F. F. Fang, L. Esaki and L. L. Chang, “Electrons and Holes in InAs-GaAlSb Quantum Wells,” J. Physique C5, 151 (1987).

    Google Scholar 

  74. L. Esaki, L. L. Chang and E. E. Mendez, “Polytype Superlattices and Multi-Heterojunctions,” Jpn. J. Appl. Phys. 20, L529 (1981).

    Article  Google Scholar 

  75. H. Takaoka, C. A. Chang, E. E. Mendez, L. L. Chang and L. Esaki, “GaSb-AlSb-InAs Multi-Heterojunctions,” Physica 117–118B, 741 (1983).

    Google Scholar 

  76. R. Beresford, L. F. Luo, K. F. Longenbach and W. I. Wang, “Resonant Interband Tunneling through a 110nm InAs Quantum Well,” Appl. Phys. Lett. 56, 551 (1990).

    Article  Google Scholar 

  77. G. C. Osbourn, “Strained-Layer Superlattices from Lattice Mismatched Materials,” J. Appl. Phys. 53, 1586 (1982).

    Article  Google Scholar 

  78. P. Voisin, C. Delalande, M. Voos, L. L. Chang, A. Segmuller, C. A. Chang and L. Esaki, “Light and Heavy Valence Subbands Reversai in GaSb-AlSb Superlattices,” Phys. Rev. B20, 2276 (1984).

    Article  Google Scholar 

  79. H. Shen, Z. Hang, J. Leng, F. H. Pollak, L. L. Chang, W. I. Wang and L. Esaki, “Interband Transitions from the Photoreflectance of GaSb/AlSb Multiple Quantum Wells,” Superlattice and Microstructures, 5, 591 (1989).

    Article  Google Scholar 

  80. G. Abstreiter, H. Brugger, T. Wolf, H. Jorge and H. J. Herzog, “Strain-Induced Two-Dimensional Electron Gas in Selectively Doped Si/SixGe1_x Superlattices,” Phys. Rev. Lett. 54, 2441 (1985).

    Article  Google Scholar 

  81. G. C. Osburn, “InAsSb Strained-Layer Superlattices for Long Wavelength Detector Applications,” J. Vac. Sci. Technol. B2, 176 (1984).

    Article  Google Scholar 

  82. F. Cerdeira, A. Pinczuk, J. C. Bean, B. Batlogg and B. A. Wilson, “Raman Scattering from GexSi1-x/Si Strained-Layer Superlattices,” Appl. Phys. Lett. 45, 1138 (1984).

    Article  Google Scholar 

  83. B. Jusserand, P. Voisin, M. Voos, L. L. Chang, E. E. Mendez and L. Esaki, “Raman Scattering in GaSb-AlSb Strained Layer Superlattices,” Appl. Phys. Lett. 46, 678 (1985).

    Article  Google Scholar 

  84. J. K. Furdyna, “Magnetic Properties of Diluted Magnetic Semiconductors: A Review,” J. Appl. Phys. 61, 3526 (1987).

    Article  Google Scholar 

  85. R. N. Bicknell, R. W. Yanka, N. C. Giles-Taylor, E. L. Buckland and J. F. Schetzina, “Cd1-xMnxTe-CdTe Multilayers Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett., 45, 92 (1984).

    Article  Google Scholar 

  86. L. L. Chang, D. D. Awschalom, M. R. Freeman and L. Vina, “Optical and Magnetic Properties of Diluted Magnetic Semiconductor Heterostructures,” in Condensed Systems of Low Dimensionality, ed. by J. L. Beeby (Plenum Press, New York, 1991). p. 165.

    Chapter  Google Scholar 

  87. X. C. Zhang, S. K. Chang, A. V. Nurmikko, L. A. Kolodziejski, R. L. Gunshore and S. Datta, “Interface Localization of Excitons in CdTe/Cd1-xMxTe Multiple Quantum Wells,” Phys. Rev. B31, 4056 (1985).

    Article  Google Scholar 

  88. E. K. Suh, D. V. Bartholomew, A. K. Ramdas, S. Rodriguez, S. Venogupalan, L. A. Kolodziejski and R. L. Gunshore, “Raman Scattering from Superlattices of Diluted Magnetic Semiconductors,” Phys. Rev. B36, 4316 (1987).

    Article  Google Scholar 

  89. D. D. Awschalom, J. M. Hong, L. L. Cheng and G. Grinstein, “Dimensional Crossover Studies of Magnetic Susceptibility in Diluted Magnetic Semiconductor Superlattices,” Phys. Rev. Lett. 59, 1733 (1987).

    Article  Google Scholar 

  90. D. D. Awschalom, J. Warnock, J. M. Hong, L. L. Chang, M. B. Ketchen and W. J. Gallagher, “Magnetic Manifestation of Carrier Confinement in Quantum Wells,” Phys. Rev. Lett 62, 199 (1989).

    Article  Google Scholar 

  91. K. F. Berggren, T. J. Thornton, D. J. Newson and M. Pepper, “Magnetic Depopulation of 1D Subbands in a Narrow 2D Electron Gas in a GaAs: AlGaAs Heterojunction,” Phys. Rev. Lett. 5, 1769 (1986).

    Article  Google Scholar 

  92. W. Hansen, M. Horst, J. P. Kotthaus, U. Merkt, C. Sikorski and K. Ploog, “Intersubband Resonance in Quasi One-Dimensional Inversion Channels,” Phys. Rev. Lett. 58, 2586 (1987).

    Article  Google Scholar 

  93. K. Kohl, D. Heitmann, P. Grambow and K. Ploog, “One-Dimensional Magnetoexcitons in GaAs/AlxGaxAs Quantum Wires,” Phys. Rev. Lett. 63, 2124 (1989).

    Article  Google Scholar 

  94. T. P. Smith, H. Arnot, J. M. Hong, C. M. Knoedler, S. E. Laux and H. Schmid, “Capacitance Oscillations in One-Dimensional Electron Systems,” Phys. Rev. Lett. 59, 2802 (1987).

    Article  Google Scholar 

  95. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel and C. T. Foxon, “Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas,” Phys. Rev. Lett. 60, 848 (1988).

    Article  Google Scholar 

  96. R. A. Webb, S. Washburn, C. P. Umbach and R. B. Laibowitz, “Observation of h/e Aharonov-Bohm Oscillations in Narrow Metal Rings,” Phys. Rev. Lett. 54, 2696(1985).

    Article  Google Scholar 

  97. P. A. Lee and A. D. Stone, “Universal Conductance Fluctuations in Metals,” Phys. Rev. Lett. 55, 1622(1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chang, L.L. (1991). Materials and Physics Aspects of Quantum Heterostructures. In: Esaki, L. (eds) Highlights in Condensed Matter Physics and Future Prospects. NATO ASI Series, vol 285. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3686-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3686-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3688-2

  • Online ISBN: 978-1-4899-3686-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics