Skip to main content

Some Applications of Probability Theory in Direct Methods

  • Chapter
Direct Methods of Solving Crystal Structures

Part of the book series: NATO ASI Series ((NSSB,volume 274))

  • 82 Accesses

Abstract

It may seem somewhat surprising at first that probability theory has played such an important role in the solution of the crystal structure determination problem. Crystals, which are usually defined in terms of the long range ordering they display, might appear to be poor samples on which to apply a mathematical model devised to deal with random experiments. It is the realization that the periodically repeating motif could itself be depicted as consisting of atoms randomly distributed (Wilson, 1949) that allowed the phase problem to be phrased and solved in a probabilistic framework. Since then, there have been numerous applications of probability theory to the problem of crystal structure determination. They have essentially provided a solution for the case of small molecule crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bricogne, G., 1988, A Bayesian Statistical Theory of the Phase Problem. I. A Multichannel Maximum-Entropy Formalism for Constructing Generalized Joint Probability Distributions of Structure Factors, Acta Cryst., A44:517.

    Article  Google Scholar 

  • Castleden, I.R., 1987, A Joint Probability Distribution of Invariants for all Space Groups, Acta Cryst., A43:384.

    Article  Google Scholar 

  • Cochran, W. and Woolfson, M.M., 1955, The Theory of Sign Relations Between Structure Factors, Acta Cryst., 8:1.

    Article  CAS  Google Scholar 

  • Cramér, H., 1962, “The Elements of Probability Theory and some of its Applications”, John Wiley & Sons, New York.

    Google Scholar 

  • Fortier, S. and Nigam, G.D., 1989, On the Probabilistic Theory of Isomorphous Data Sets: General Joint Distributions for the SIR, SAS, and Partial/Complete Structure Cases, Acta Cryst., A45:247.

    Article  Google Scholar 

  • French, S. and Wilson, K., 1978, On the Treatment of Negative Intensity Observations, Acta Cryst., A34:517.

    Article  Google Scholar 

  • Giacovazzo, C., 1976, A Probabilistic Theory of the Cosine Invariant cos (ϕ h + ϕ k + ϕ 1ϕ h+k+1), Acta Cryst., A32:91.

    Article  Google Scholar 

  • Giacovazzo, C., 1977, A General Approach to Phase Relationships: The Method of Representations, Acta Cryst., A33:933.

    Article  Google Scholar 

  • Giacovazzo, C., 1980, “Direct Methods in Crystallography”, Academic Press, London.

    Google Scholar 

  • Giacovazzo, C., 1983a, The Estimation of Two-Phase and Three-Phase Invariants in P1 when Anomalous Scatterers are Present, Acta Cryst., A39:585.

    Article  Google Scholar 

  • Giacovazzo, C., 1983b, From a Partial to the Complete Crystal Structure, Acta Cryst., A39:685.

    Article  Google Scholar 

  • Hauptman, H.A., 1972, “Crystal Structure Determination. The Role of the Cosine Semi-Invariants”, Plenum Press, New York.

    Book  Google Scholar 

  • Hauptman, H., 1975a, A Joint Probability Distribution of Seven Structure Factors, Acta Cryst., A31.–671.

    Article  Google Scholar 

  • Hauptman, H., 1975b, A New Method in the Probabilistic Theory of the Structure Invariants, Acta Cryst., A31:680.

    Article  Google Scholar 

  • Hauptman, H., 1982a, On Integrating the Techniques of Direct Methods and Isomorphour Replacement: I. The Theoretical Basis, Acta Cryst., A38:289.

    Article  Google Scholar 

  • Hauptman, H., 1982b, On Integrating the Techniques of Direct Methods with Anomalous Dispersion. I. The Theoretical Basis, Acta Cryst., A38:632.

    Article  Google Scholar 

  • Hauptman, H. and Karle, J., 1953a, “Solution of the Phase Problem. I. The Centrosymmetric Crystal”, A.C.A. Monograph No. 3, Polycrystal Book Service, Brooklyn.

    Google Scholar 

  • Hauptman, H. and Karle, J., 1953b, The Probability Distribution of the Magnitude of a Structure Factor. II. The Non-Centrosymmetric Crystal, Acta Cryst., 6:136.

    Article  CAS  Google Scholar 

  • Heinerman, J.J.L., 1977, Some Contributions to the Theory of Triplet and Quartet Structure Invariants, in “Direct Methods in Crystallography”, H. Hauptman, ed., Proceedings of the 1976 Intercongress Symposium.

    Google Scholar 

  • Heinerman, J.J.L., Krabbendam, H. and Kroon, J., 1977, The von Mises Distribution of the Phase of a Structure Invariant, Acta Cryst., A33:873.

    Article  Google Scholar 

  • Oatley, S. and French, S., 1982, A Profile-Fitting Method for the Analysis of Diffractometer Intensity Data, Acta Cryst., A38:537.

    Article  Google Scholar 

  • Papoulis, A., 1984, “Probability, Random Variables, and Stochastic Processes”, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Peschar, R. and Schenk, H., Computer-Aided Derivation of Theoretical Joint Probability Distributions of Normalized Structure Factors, Acta Cryst.

    Google Scholar 

  • Schwarzenbach, D., Abrahams, S.C., Flack, H.D., Gonschorek, W., Hahn, T., Huml, K., Marsh, R.E., Prince, E., Robertson, B.E., Rollett, J.S. and Wilson, A.J.C., 1989, Statistical Descriptors in Crystallography, Acta Cryst., A45:63.

    Article  Google Scholar 

  • Shmueli, U., Weiss, G.H., Keifer, J.E. and Wilson, A.J.C., 1984, Exact Random-Walk Models in Crystallographic Statistics. I. Space Groups PI and P1̄, Acta Cryst., A40:651.

    Article  Google Scholar 

  • Shmueli, U. and Weiss, G.H., 1987, Exact Random-Walk Models in Crystallographic Statistics. III. Distributions of |E| for Space Groups of Low Symmetry, Acta Cryst., A43:93.

    Article  Google Scholar 

  • Wilson, A.J.C., 1942, Determination of Absolute from Relative X-Ray Intensity Data, Nature, 150:152.

    Article  Google Scholar 

  • Wilson, A.J.C., 1949, The Probability Distribution of X-Ray Intensities, Acta Cryst., 2:318.

    Article  Google Scholar 

  • Woolfson, M.M., 1954, The Statistical Theory of Sign Relationships, Acta Cryst., 7:61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fortier, S., Castleden, I.R. (1991). Some Applications of Probability Theory in Direct Methods. In: Schenk, H. (eds) Direct Methods of Solving Crystal Structures. NATO ASI Series, vol 274. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3692-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3692-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3694-3

  • Online ISBN: 978-1-4899-3692-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics