Skip to main content

The Influence of Microstructure on Neural Tissue Mechanics

  • Chapter
Structure-Based Mechanics of Tissues and Organs

Abstract

Neural tissues have a complex microstructure, and this is reflected in their mechanical properties. Both brain and spinal cord tissues are heterogeneous, with white and grey matter regions having different constituents and structural arrangements. This gives rise to the complex, non-linearly viscoelastic mechanical behaviour of these tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34(1):51–61.

    Article  PubMed  CAS  Google Scholar 

  • Bain AC, Shreiber DI, Meaney DF. Modeling of microstructural kinematics during simple elongation of central nervous system tissue. J Biomech Eng. 2003;125:798.

    Article  PubMed  Google Scholar 

  • Bilston LE, editor. Neural tissue biomechanics. Studies in mechanobiology, tissue engineering and biomaterials. Berlin: Springer; 2011.

    Google Scholar 

  • Bilston LE, Thibault LE. The mechanical properties of the human cervical spinal cord in vitro. Ann Biomed Eng. 1996;24(1):67–74.

    PubMed  CAS  Google Scholar 

  • Bilston LE, Liu Z, Phan-Thien N. Linear viscoelastic properties of bovine brain tissue in shear. Biorheology. 1997;34(6):377–85.

    Article  PubMed  CAS  Google Scholar 

  • Bilston LE, Liu Z, Phan-Thien N. Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology. 2001;38(4):335–45.

    PubMed  CAS  Google Scholar 

  • Brands DWA, Peters GWM, Bovendeerd PHM. Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact. J Biomech. 2004;37(1):127–34.

    Article  PubMed  CAS  Google Scholar 

  • Cater HL, Sundstrom LE, Morrison B. Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate. J Biomech. 2006;39(15):2810–8.

    Article  PubMed  Google Scholar 

  • Cheng S, Bilston LE. Unconfined compression of white matter. J Biomech. 2007;40(1):117–24.

    Article  PubMed  Google Scholar 

  • Cheng S, Bilston LE. Computational model of the cerebral ventricles in hydrocephalus. J Biomech Eng. 2010;132:054501.

    Article  PubMed  Google Scholar 

  • Cheng S, Clarke EC, Bilston LE. Rheological properties of the tissues of the central nervous system: a review. Med Eng Phys. 2008;30(10):1318–37.

    Article  PubMed  Google Scholar 

  • Chinzei K, Miller K. Compression of swine brain tissue: experiment in vitro. J Mech Eng Lab. 1996;50(4):106–15.

    Google Scholar 

  • Clarke EC, Bilston LE. Contrasting biomechanics and neuropathology of spinal cord injury in neonatal and adult rats following vertebral dislocation. J Neurotrauma. 2008;25(7):817–32.

    Article  PubMed  Google Scholar 

  • Clarke EC, McNulty PA, Macefield VG, Bilston LE. Mechanically evoked sensory and motor responses to dynamic compression of the ulnar nerve. Muscle Nerve. 2007;35(3):303–11.

    Article  PubMed  Google Scholar 

  • Clarke EC, Choo AM, Liu J, Lam CK, Bilston LE, Tetzlaff W, et al. Anterior fracture-dislocation is more severe than lateral: a biomechanical and neuropathological comparison in rat thoracolumbar spine. J Neurotrauma. 2008;25(4):371–83.

    Article  PubMed  Google Scholar 

  • Clarke EC, Cheng S, Bilston LE. The mechanical properties of neonatal rat spinal cord in vitro, and comparisons with adult. J Biomech. 2009;42(10):1397–402.

    Article  PubMed  Google Scholar 

  • Clarke E, Cheng S, Green M, Sinkus R, Bilston L. Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver. J Biomech. 2011;44(13):2461–5.

    Article  PubMed  CAS  Google Scholar 

  • Cloots RJH, van Dommelen JAW, Nyberg T, Kleiven S, Geers MGD. Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. Biomech Model Mechanobiol. 2011;10(3):413–22.

    Article  PubMed  CAS  Google Scholar 

  • Coats B, Margulies SS. Material properties of porcine pariet al cortex. J Biomech. 2006;39(13):2521–5.

    Article  PubMed  Google Scholar 

  • Darvish KK, Crandall JR. Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med Eng Phys. 2001;23(9):633–45.

    Article  PubMed  CAS  Google Scholar 

  • Dilley A, Lynn B, Pang SJ. Pressure and stretch mechanosensitivity of peripheral nerve fibres following local inflammation of the nerve trunk. Pain. 2005;117(3):462–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elkin BS, Azeloglu EU, Costa KD, Morrison 3rd B. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma. 2007;24(5):812–22.

    Article  PubMed  Google Scholar 

  • Fallenstein GT, Hulce VD, Melvin JW. Dynamic mechanical properties of human brain tissue. JBiomech. 1969;2(3):217–26.

    Article  PubMed  CAS  Google Scholar 

  • Ferry J. Viscoelastic properties of polymers. New York: Wiley; 1980.

    Google Scholar 

  • Fiford RJ. Biomechanics of spinal cord injury in a novel rat model. PhD thesis, University of Sydney; 2006.

    Google Scholar 

  • Fiford RJ, Bilston LE. The mechanical properties of rat spinal cord in vitro. J Biomech. 2005;38(7):1509–15.

    Article  PubMed  Google Scholar 

  • Fiford RJ, Bilston LE, Waite P, Lu J. A vertebral dislocation model of spinal cord injury in rats. JNeurotrauma. 2004;21(4):451–8.

    Article  PubMed  CAS  Google Scholar 

  • Franceschini G, Bigoni D, Regitnig P, Holzapfel GA. Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J Mech Phys Solids. 2006;54(12):2592–620.

    Article  Google Scholar 

  • Galford JE, McElhaney JH. A viscoelastic study of scalp, brain, and dura. J Biomech. 1970;3: 211–21.

    Article  PubMed  CAS  Google Scholar 

  • García J, Smith J. A biphasic hyperelastic model for the analysis of fluid and mass transport in brain tissue. Ann Biomed Eng. 2009;37(2):375–86.

    Article  PubMed  Google Scholar 

  • Gennarelli TA, Thibault LE. Biomechanics of acute subdural hematoma. J Trauma. 1982;22(8):680–6.

    Article  PubMed  CAS  Google Scholar 

  • Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 1982;12(6):564–74.

    Article  PubMed  CAS  Google Scholar 

  • Green MA, Bilston LE, Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008;21(7):755–64.

    Article  PubMed  Google Scholar 

  • Green MA, Bilston LE, van Houten E, Sinkus R, editors. In-vivo brain viscoelastic anisotropic properties using DTI and MR-elastography. In: Proceedings of the 17th ISMRM; Honolulu, HI; 2009.

    Google Scholar 

  • Han SE, Lin CSY, Boland RA, Bilston LE, Kiernan MC. Changes in human sensory axonal excitability induced by focal nerve compression. J Physiol. 2010;588(10):1737–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hollander Y, Durban D, Lu X, Kassab GS, Lanir Y. Experimentally validated microstructural 3D constitutive model of coronary arterial media. J Biomech Eng. 2011a;133(3):031007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollander Y, Durban D, Lu X, Kassab GS, Lanir Y. Constitutive modeling of coronary arterial media—comparison of three model classes. J Biomech Eng. 2011b;133(6):061008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horowitz A, Lanir Y, Yin FC, Perl M, Sheinman I, Strumpf RK. Structural three-dimensional constitutive law for the passive myocardium. J Biomech Eng. 1988;110(3):200–7.

    Article  PubMed  CAS  Google Scholar 

  • Hrapko M, van Dommelen JAW, Peters GWM, Wismans JSHM. The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology. 2006;43(5): 623–36.

    PubMed  CAS  Google Scholar 

  • Hubbard RD, Chen Z, Winkelstein BA. Transient cervical nerve root compression modulates pain: load thresholds for allodynia and sustained changes in spinal neuropeptide expression. J Biomech. 2008;41(3):677–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichihara K, Taguchi T, Shimada Y, Sakuramoto I, Kawano S, Kawai S. Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. JNeurotrauma. 2001;18(3):361–7.

    Article  PubMed  CAS  Google Scholar 

  • Jamin Y, Boult JK, Bamber JC, Sinkus R, Robinson SP, editors. High resolution magnetic resonance elastography of orthotopic murine glioma in vivo. Montreal: ISMRM; 2011.

    Google Scholar 

  • Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack Jr CR, et al. Magnetic resonance elastography of the brain. Neuroimage. 2008;39(1):231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwan MK, Wall EJ, Weiss JA, Rydevik BL, Garfin SR, Woo SL-Y. Biomechanical analysis of rabbit peripheral nerve: in situ stresses and strains. ASME Biomech Symp AMD. 1989;98: 109–12.

    Google Scholar 

  • Kwan MK, Wall EJ, Massie J, Garfin SR. Strain, stress and stretch of peripheral nerve rabbit experiments in vitro and in vivo. Acta Orthop. 1992;63(3):267–72.

    Article  CAS  Google Scholar 

  • Lanir Y. Biaxial stress-relaxation in skin. Ann Biomed Eng. 1976;4(3):250–70.

    Article  PubMed  CAS  Google Scholar 

  • Lanir Y. Structure-strength relations in mammalian tendon. Biophys J. 1978;24(2):541–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J Biomech. 1979;12(6):423–36.

    Article  PubMed  CAS  Google Scholar 

  • Lanir Y. A microstructure model for the rheology of mammalian tendon. J Biomech Eng. 1980;102(4):332–9.

    Article  PubMed  CAS  Google Scholar 

  • Lanir Y. Constitutive equations for the lung tissue. J Biomech Eng. 1983a;105(4):374–80.

    Article  PubMed  CAS  Google Scholar 

  • Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983b;16(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  • Lanir Y. Plausibility of structural constitutive equations for swelling tissues—implications of the C-N and S-E conditions. J Biomech Eng. 1996;118(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  • Lanir Y. Physical mechanisms of soft tissues rheological properties. In: Chien S, editor. Biomechanics: from molecules to man: tributes to Yuan-Cheng Fung on his 90th birthday. Singapore: World Scientific; 2009. p. 1–12.

    Chapter  Google Scholar 

  • Lokshin O, Lanir Y. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization. J Biomech Eng. 2009;131(3):031009.

    Article  PubMed  Google Scholar 

  • Lu Y-B, Franze K, Seifert G, Steinhäuser C, Kirchhoff F, Wolburg H, et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci. 2006;103(47):17759–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miller K. Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J Biomech. 1999;32(5):531–7.

    Article  PubMed  CAS  Google Scholar 

  • Miller K, Chinzei K. Mechanical properties of brain tissue in tension. J Biomech. 2002;35(4): 483–90.

    Article  PubMed  Google Scholar 

  • Miller K, Chinzei K, Orssengo G, Bednarz P. Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech. 2000;33(11):1369–76.

    Article  PubMed  CAS  Google Scholar 

  • Murphy MC, Huston J, Jack CR, Glaser KJ, Manduca A, Felmlee JP, et al. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J Magn Reson Imaging. 2011;34(3):494–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson KJ, Winkelstein BA. Nerve and nerve root biomechanics. In: Bilston LE, editor. Neural tissue biomechanics. Studies in mechanobiology, tissue engineering and biomaterials. Springer: Berlin; 2011. p. 203–29.

    Google Scholar 

  • Nicolle S, Lounis M, Willinger R, Palierne JF. Shear linear behavior of brain tissue over a large frequency range. Biorheology. 2005;42(3):209–23.

    PubMed  CAS  Google Scholar 

  • Ning X, Zhu Q, Lanir Y, Margulies SS. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J Biomech Eng. 2006;128(6):925–33.

    Article  PubMed  Google Scholar 

  • Pena A, Bolton MD, Whitehouse H, Pickard JD. Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis. Neurosurgery. 1999;45(1):107.

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB, Smit X, De Zoysa N, Afoke A, Brown RA. Peripheral nerves in the rat exhibit localized heterogeneity of tensile properties during limb movement. J Physiol. 2004;557(3):879–87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–48.

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma. 1995;12(4):555–64.

    Article  PubMed  CAS  Google Scholar 

  • Prange MT, Margulies SS. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng. 2002;124(2):244–52.

    Article  PubMed  Google Scholar 

  • Qin EC, Sinkus R, Geng G, Cheng S, Green M, Rae CD, Bilston LE. Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study. J Magn Reson Imaging. 2013;37:217–26.

    Article  PubMed  Google Scholar 

  • Rothman SM, Winkelstein BA. Chemical and mechanical nerve root insults induce differential behavioral sensitivity and glial activation that are enhanced in combination. Brain Res. 2007;1181:30–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rothman SM, Nicholson KJ, Winkelstein BA. Time-dependent mechanics and measures of glial activation and behavioral sensitivity in a rodent model of radiculopathy. J Neurotrauma. 2010;27(5):803–14.

    Article  PubMed  Google Scholar 

  • Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J, Sack I, et al. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed. 2008;21(3): 265–71.

    Article  PubMed  Google Scholar 

  • Sack I, Beierbach B, Wuerfel J, Klatt D, Hamhaber U, Papazoglou S, et al. The impact of aging and gender on brain viscoelasticity. Neuroimage. 2009;46(3):652–7.

    Article  PubMed  Google Scholar 

  • Schregel K, Wuerfel née Tysiak E, Garteiser. P, Gemeinhardt I, Prozorovski T, Aktas O, et al. Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc Natl Acad Sci U S A. 2012;109(17):6650–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shreiber D, Hao H, Elias R. Probing the influence of myelin and glia on the tensile properties of the spinal cord. Biomech Model Mechanobiol. 2009;8(4):311–21.

    Article  PubMed  Google Scholar 

  • Singh A, Lu Y, Chen C, Cavanaugh JM. Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J Biomech. 2006;39(9):1669–76.

    Article  PubMed  Google Scholar 

  • Singh A, Kallakuri S, Chen C, Cavanaugh JM. Structural and functional changes in nerve roots due to tension at various strains and strain rates: an in-vivo study. J Neurotrauma. 2009;26(4): 627–40.

    Article  PubMed  Google Scholar 

  • Streitberger K-J, Wiener E, Hoffmann J, Freimann FB, Klatt D, Braun J, et al. In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed. 2011;24(4):385–92.

    PubMed  Google Scholar 

  • Tanoue M, Yamaga M, Ide J, Takagi K. Acute stretching of peripheral nerves inhibits retrograde axonal transport. J Hand Surg Br. 1996;21(3):358–63.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia. Neuroradiology. 2003;45(2):90–4.

    PubMed  CAS  Google Scholar 

  • Velardi F, Fraternali F, Angelillo M. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech Model Mechanobiol. 2006;5(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Garcia M, Lu X, Lanir Y, Kassab GS. Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am J Physiol Heart Circ Physiol. 2006;291(3):H1200–9.

    Article  PubMed  CAS  Google Scholar 

  • Wittek A, Hawkins T, Miller K. On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech Model Mechanobiol. 2009;8(1):77–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang KH, Mao H, Wagner C, Zhu F, Chou CC, King AI. Modeling of the brain for injury prevention. In: Bilston LE, editor. Neural tissue biomechanics. Studies in mechanobiology, tissue engineering and biomaterials. Berlin: Springer; 2011. p. 69–120.

    Google Scholar 

  • Zhang J, Green MA, Sinkus R, Bilston LE. Viscoelastic properties of human cerebellum using magnetic resonance elastography. J Biomech. 2011;44(10):1909–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Lynne Bilston is supported by a National Health and Medical Research Council of Australia Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Bilston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bilston, L.E. (2016). The Influence of Microstructure on Neural Tissue Mechanics. In: Kassab, G., Sacks, M. (eds) Structure-Based Mechanics of Tissues and Organs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7630-7_1

Download citation

Publish with us

Policies and ethics