Skip to main content

Complications of Continuous Renal Replacement Therapy (CRRT)

  • Chapter
  • First Online:
Core Concepts in Dialysis and Continuous Therapies

Abstract

Continuous renal replacement therapy (CRRT) has been developed specifically for the treatment of critically ill patients with acute kidney injury (AKI) who cannot undergo traditional intermittent hemodialysis because of hemodynamic instability or in whom intermittent hemodialysis is unable to control volume or metabolic derangements. A careful understanding of the limitations and potential complications of CRRT is necessary to optimize the care of the critically ill patient with AKI and decrease undue morbidity. This chapter describes the complications of the CRRT procedure associated with vascular access, anticoagulation, hemodynamics, volume management, the extracorporeal circuit, electrolytes and acid-base, nutrition, and drug administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shingarev R, Wille K, Tolwani A. Management of complications in renal replacement therapy. Semin Dial. 2011;24(2):164–8.

    Article  PubMed  Google Scholar 

  2. Oliver MJ. Acute dialysis catheters. Semin Dial. 2001;14(6):432–5 (Review).

    Article  CAS  PubMed  Google Scholar 

  3. Mansfield PF, Hohn DC, Fornage BD, Gregurich MA, Ota DM. Complications and failures of subclavian-vein catheterization. N Engl J Med. 1994;331(26):1735–8 (Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  4. Merrer J, De Jonghe B, Golliot F, Lefrant JY, Raffy B, Barre E, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA. 2001;286(6):700–7 (Clinical Trial Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  5. Sznajder JI, Zveibil FR, Bitterman H, Weiner P, Bursztein S. Central vein catheterization. Failure and complication rates by three percutaneous approaches. Arch Intern Med. 1986;146(2):259–61. (Comparative Study).

    Article  CAS  PubMed  Google Scholar 

  6. Karakitsos D, Labropoulos N, De Groot E, Patrianakos AP, Kouraklis G, Poularas J, et al. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care. 2006;10(6):R162 (Randomized Controlled Trial).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prabhu MV, Juneja D, Gopal PB, Sathyanarayanan M, Subhramanyam S, Gandhe S, et al. Ultrasound-guided femoral dialysis access placement: a single-center randomized trial. Clin J Am Soc Nephrol. 2010;5(2):235–9 (Randomized Controlled Trial).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Disease K, Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Inter. 2012;2:1–138.

    Article  Google Scholar 

  9. National Kidney Foundation. KDOQI clinical practice guidelines and clinical practice recommendations for 2006 updates: vascular access. Am J Kidney Dis. 2006;48:S176–247.

    Article  Google Scholar 

  10. O’Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, et al. Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol. 2002;23(12):759–69 (Guideline Research Support, Non-U.S. Gov’t).

    Article  PubMed  Google Scholar 

  11. Gowardman JR, Robertson IK, Parkes S, Rickard CM. Influence of insertion site on central venous catheter colonization and bloodstream infection rates. Intensive Care Med. 2008;34(6):1038–45 (Research Support, Non-U.S. Gov’t).

    Article  PubMed  Google Scholar 

  12. Parienti JJ, Thirion M, Megarbane B, Souweine B, Ouchikhe A, Polito A, et al. Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA. 2008;299(20):2413–22 (Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  13. Parienti JJ, Megarbane B, Fischer MO, Lautrette A, Gazui N, Marin N, et al. Catheter dysfunction and dialysis performance according to vascular access among 736 critically ill adults requiring renal replacement therapy: a randomized controlled study. Crit Care Med. 2010;38(4):1118–25.

    Article  PubMed  Google Scholar 

  14. Finkel KW, Podoll AS. Complications of continuous renal replacement therapy. Semin Dial. 2009;22(2):155–9 (Review).

    Article  PubMed  Google Scholar 

  15. Cimochowski GE, Worley E, Rutherford WE, Sartain J, Blondin J, Harter H. Superiority of the internal jugular over the subclavian access for temporary dialysis. Nephron. 1990;54(2):154–61 (Comparative Study).

    Article  CAS  PubMed  Google Scholar 

  16. Schillinger F, Schillinger D, Montagnac R, Milcent T. Post-catheterization venous stenosis in hemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrologie. 1992;13(3):127–33 (Comparative Study).

    CAS  PubMed  Google Scholar 

  17. Tolwani A. Continuous renal-replacement therapy for acute kidney injury. N Engl J Med. 2012;367(26):2505–14 (Review).

    Article  CAS  PubMed  Google Scholar 

  18. Leblanc M, Fedak S, Mokris G, Paganini EP. Blood recirculation in temporary central catheters for acute hemodialysis. Clin Nephrol. 1996;45(5):315–9 (Comparative Study).

    CAS  PubMed  Google Scholar 

  19. Little MA, Conlon PJ, Walshe JJ. Access recirculation in temporary hemodialysis catheters as measured by the saline dilution technique. Am J Kidney Dis. 2000;36(6):1135–9.

    Article  CAS  PubMed  Google Scholar 

  20. Venkataraman R, Kellum JA, Palevsky P. Dosing patterns for continuous renal replacement therapy at a large academic medical center in the United States. J Crit Care. 2002;17(4):246–50 (Comparative Study Review).

    Article  PubMed  Google Scholar 

  21. Zhongping H, Jeffrey JL, Claudo R, William RC. Basic principles of solute transport. In: John AK, Bellomo R, Claudo R, editors. Continuous renal replacement therapy. 1st edition. Oxford: Oxford University Press; 2010. pp. 25–33.

    Google Scholar 

  22. Clark WR, Turk JE, Kraus MA, Gao D. Dose determinants in continuous renal replacement therapy. Artif Organs. 2003;27(9):815–20 (Research Support, Non-U.S. Gov’t Review).

    Google Scholar 

  23. Betjes MG, van Oosterom D, van Agteren M, van de Wetering J. Regional citrate versus heparin anticoagulation during venovenous hemofiltration in patients at low risk for bleeding: similar hemofilter survival but significantly less bleeding. J Nephrol. 2007;20(5):602–8 (Randomized Controlled Trial).

    CAS  PubMed  Google Scholar 

  24. Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med. 2004;30(2):260–5 (Clinical Trial Comparative Study Randomized Controlled Trial).

    Article  PubMed  Google Scholar 

  25. Davenport A, Will EJ, Davison AM. Comparison of the use of standard heparin and prostacyclin anticoagulation in spontaneous and pump-driven extracorporeal circuits in patients with combined acute renal and hepatic failure. Nephron. 1994;66(4):431–7 (Clinical Trial Comparative Study Controlled Clinical Trial Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  26. van de Wetering J, Westendorp RG, van der Hoeven JG, Stolk B, Feuth JD, Chang PC. Heparin use in continuous renal replacement procedures: the struggle between filter coagulation and patient hemorrhage. J Am Soc Nephrol. 1996;7(1):145–50.

    PubMed  Google Scholar 

  27. Martel N, Lee J, Wells PS. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood. 2005;106(8):2710–5 (Meta-Analysis).

    Article  CAS  PubMed  Google Scholar 

  28. Horrow JC. Protamine: a review of its toxicity. Anesth Analg. 1985;64(3):348–61 (Review).

    Article  CAS  PubMed  Google Scholar 

  29. Tolwani A, Wille KM. Advances in continuous renal replacement therapy: citrate anticoagulation update. Blood Purif. 2012;34(2):88–93.

    Article  CAS  PubMed  Google Scholar 

  30. Bakker AJ, Boerma EC, Keidel H, Kingma P, van der Voort PH. Detection of citrate overdose in critically ill patients on citrate-anticoagulated venovenous haemofiltration: use of ionised and total/ionised calcium. Clin Chem Lab Med. 2006;44(8):962–6.

    Article  CAS  PubMed  Google Scholar 

  31. Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T. Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med. 2001;29(4):748–52.

    Article  CAS  PubMed  Google Scholar 

  32. Tolwani AJ, Prendergast MB, Speer RR, Stofan BS, Wille KM. A practical citrate anticoagulation continuous venovenous hemodiafiltration protocol for metabolic control and high solute clearance. Clin J Am Soc Nephrol. 2006;1(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  33. Bellomo R, Farmer M, Wright C, Parkin G, Boyce N. Treatment of sepsis-associated severe acute renal failure with continuous hemodiafiltration: clinical experience and comparison with conventional dialysis. Blood Purif. 1995;13(5):246–54 (Clinical Trial Comparative Study Controlled Clinical Trial).

    Article  CAS  PubMed  Google Scholar 

  34. Guerin C, Girard R, Selli JM, Ayzac L. Intermittent versus continuous renal replacement therapy for acute renal failure in intensive care units: results from a multicenter prospective epidemiological survey. Intensive Care Med. 2002;28(10):1411–8 (Multicenter Study Research Support, Non-U.S. Gov’t).

    Article  PubMed  Google Scholar 

  35. John S, Griesbach D, Baumgartel M, Weihprecht H, Schmieder RE, Geiger H. Effects of continuous haemofiltration vs intermittent haemodialysis on systemic haemodynamics and splanchnic regional perfusion in septic shock patients: a prospective, randomized clinical trial. Nephrol Dial Transplant. 2001;16(2):320–7 (Clinical Trial Comparative Study Evaluation Studies Randomized Controlled Trial).

    Article  CAS  PubMed  Google Scholar 

  36. Gibney N, Cerda J, Davenport A, Ramirez J, Singbartl K, Leblanc M, et al. Volume management by renal replacement therapy in acute kidney injury. Int J Artif Organs. 2008;31(2):145–55 (Case Reports Consensus Development Conference).

    CAS  PubMed  Google Scholar 

  37. Goldstein SL. Advances in pediatric renal replacement therapy for acute kidney injury. Semin Dial. 2011;24(2):187–91.

    Article  PubMed  Google Scholar 

  38. Kalantari K, Chang JN, Ronco C, Rosner MH. Assessment of intravascular volume status and volume responsiveness in critically ill patients. Kidney Int. 2013;83(6):1017–28 (Review).

    Article  PubMed  Google Scholar 

  39. Dudney TM, Elliott CG. Pulmonary embolism from amniotic fluid, fat, and air. Prog Cardiovasc Dis. 1994;36(6):447–74 (Review).

    Article  CAS  PubMed  Google Scholar 

  40. Heckmann JG, Lang CJ, Kindler K, Huk W, Erbguth FJ, Neundorfer B. Neurologic manifestations of cerebral air embolism as a complication of central venous catheterization. Crit Care Med. 2000;28(5):1621–5 (Case Reports Review).

    Article  CAS  PubMed  Google Scholar 

  41. Bateman NT, Leach RM. ABC of oxygen. Acute oxygen therapy. BMJ. 1998;317(7161):798–801 (Review).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones S. Heat loss and continuous renal replacement therapy. AACN Clin Issues. 2004;15(2):223–30 (Review).

    PubMed  Google Scholar 

  43. Rokyta R Jr, Matejovic M, Krouzecky A, Opatrny K Jr, Ruzicka J, Novak I. Effects of continuous venovenous haemofiltration-induced cooling on global haemodynamics, splanchnic oxygen and energy balance in critically ill patients. Nephrol Dial Transplant. 2004;19(3):623–30 (Clinical Trial Research Support, Non-U.S. Gov’t).

    Article  PubMed  Google Scholar 

  44. Aslami H, Juffermans NP. Induction of a hypometabolic state during critical illness—a new concept in the ICU? Neth J Med. 2010;68(5):190–8 (Review).

    CAS  PubMed  Google Scholar 

  45. Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet. 2008;371(9628):1955–69 (Review).

    Article  PubMed  Google Scholar 

  46. Manns M, Maurer E, Steinbach B, Evering HG. Thermal energy balance during in vitro continuous veno-venous hemofiltration. ASAIO J. 1998;44(5):M601–5.

    Article  Google Scholar 

  47. Yagi N, Leblanc M, Sakai K, Wright EJ, Paganini EP. Cooling effect of continuous renal replacement therapy in critically ill patients. Am J Kidney Dis. 1998;32(6):1023–30.

    Article  CAS  PubMed  Google Scholar 

  48. Gutierrez A, Alvestrand A, Wahren J, Bergstrom J. Effect of in vivo contact between blood and dialysis membranes on protein catabolism in humans. Kidney Int. 1990;38(3):487–94 (Clinical Trial Comparative Study Controlled Clinical Trial Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  49. Ebo DG, Bosmans JL, Couttenye MM, Stevens WJ. Haemodialysis-associated anaphylactic and anaphylactoid reactions. Allergy. 2006;61(2):211–20 (Review).

    Article  CAS  PubMed  Google Scholar 

  50. Brunet P, Jaber K, Berland Y, Baz M. Anaphylactoid reactions during hemodialysis and hemofiltration: role of associating AN69 membrane and angiotensin I-converting enzyme inhibitors. Am J Kidney Dis. 1992;19(5):444–7.

    Article  CAS  PubMed  Google Scholar 

  51. Parnes EL, Shapiro WB. Anaphylactoid reactions in hemodialysis patients treated with the AN69 dialyzer. Kidney Int. 1991;40(6):1148–52 (Case Reports Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  52. Tielemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherweghem JL. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int. 1990;38(5):982–4 (Case Reports).

    Article  CAS  PubMed  Google Scholar 

  53. Schulman G, Hakim R, Arias R, Silverberg M, Kaplan AP, Arbeit L. Bradykinin generation by dialysis membranes: possible role in anaphylactic reaction. J Am Soc Nephrol. 1993;3(9):1563–9 (Research Support, U.S. Gov’t, P.H.S.)

    CAS  PubMed  Google Scholar 

  54. Baldwin IC. Training, management, and credentialing for CRRT in the ICU. Am J Kidney Dis. 1997;30(5 Suppl 4):S112–6.

    Article  CAS  PubMed  Google Scholar 

  55. Ronco C. Fluid balance in CRRT: a call to attention! Int J Artif Organs. 2005;28(8):763–4 (Editorial).

    CAS  PubMed  Google Scholar 

  56. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–38 (Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t).

    Article  PubMed  Google Scholar 

  57. Palevsky PM, Zhang JH, O'Connor TZ, Chertow GM, Crowley ST, Choudhury D, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20 (Multicenter Study Randomized Controlled Trial Research Support, N.I.H. Extramural Research Support, U.S. Gov’t, Non-P.H.S.)

    Article  CAS  PubMed  Google Scholar 

  58. Alsumrain MH, Jawad SA, Imran NB, Riar S, DeBari VA, Adelman M. Association of hypophosphatemia with failure-to-wean from mechanical ventilation. Ann Clin Lab Sci. 2010;40(2):144–8.

    CAS  PubMed  Google Scholar 

  59. Santiago MJ, Lopez-Herce J, Urbano J, Bellon JM, del Castillo J, Carrillo A. Hypophosphatemia and phosphate supplementation during continuous renal replacement therapy in children. Kidney Int. 2009;75(3):312–6.

    Article  CAS  PubMed  Google Scholar 

  60. Troyanov S, Geadah D, Ghannoum M, Cardinal J, Leblanc M. Phosphate addition to hemodiafiltration solutions during continuous renal replacement therapy. Intensive Care Med. 2004;30(8):1662–5.

    Article  PubMed  Google Scholar 

  61. Heering P, Ivens K, Thumer O, Morgera S, Heintzen M, Passlick-Deetjen J, et al. The use of different buffers during continuous hemofiltration in critically ill patients with acute renal failure. Intensive Care Med. 1999;25(11):1244–51.

    Article  CAS  PubMed  Google Scholar 

  62. Thomas AN, Guy JM, Kishen R, Geraghty IF, Bowles BJ, Vadgama P. Comparison of lactate and bicarbonate buffered haemofiltration fluids: use in critically ill patients. Nephrol Dial Transplant. 1997;12(6):1212–7.

    Article  CAS  PubMed  Google Scholar 

  63. Kierdorf HP, Leue C, Arns S. Lactate- or bicarbonate-buffered solutions in continuous extracorporeal renal replacement therapies. Kidney Int Suppl. 1999;72:S32–6.

    Article  CAS  PubMed  Google Scholar 

  64. McLean AG, Davenport A, Cox D, Sweny P. Effects of lactate-buffered and lactate-free dialysate in CAVHD patients with and without liver dysfunction. Kidney Int. 2000;58(4):1765–72.

    Article  CAS  PubMed  Google Scholar 

  65. Wang P-L. Bone resorption and “relative” immobilization hypercalcemia with prolonged continuous renal replacement therapy and citrate anticoagulation. Am J Kidney Dis. 2004;44(6):1110–4.

    Article  PubMed  Google Scholar 

  66. Mainous MR, Deitch EA. Nutrition and infection. Surg Clin North Am. 1994;74(3):659–76 (Review).

    CAS  PubMed  Google Scholar 

  67. Santos JI. Nutrition, infection, and immunocompetence. Infect Dis Clin North Am. 1994;8(1):243–67 (Review).

    CAS  PubMed  Google Scholar 

  68. Obialo CI, Okonofua EC, Nzerue MC, Tayade AS, Riley LJ. Role of hypoalbuminemia and hypocholesterolemia as copredictors of mortality in acute renal failure. Kidney Int. 1999;56(3):1058–63 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  69. Hynote ED, McCamish MA, Depner TA, Davis PA. Amino acid losses during hemodialysis: effects of high-solute flux and parenteral nutrition in acute renal failure. JPEN J Parenter Enteral Nutr. 1995;19(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  70. Mokrzycki MH, Kaplan AA. Protein losses in continuous renal replacement therapies. J Am Soc Nephrol. 1996;7(10):2259–63.

    CAS  PubMed  Google Scholar 

  71. Wooley JA, Btaiche IF, Good KL. Metabolic and nutritional aspects of acute renal failure in critically ill patients requiring continuous renal replacement therapy. Nutr Clin Pract. 2005;20(2):176–91 (Review).

    Article  PubMed  Google Scholar 

  72. Basi S, Pupim LB, Simmons EM, Sezer MT, Shyr Y, Freedman S, et al. Insulin resistance in critically ill patients with acute renal failure. Am J Physiol Renal Physiol. 2005;289(2):F259–64 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.)

    Article  Google Scholar 

  73. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61 (Randomized Controlled Trial Research Support, Non-U.S. Gov’t).

    Article  PubMed  Google Scholar 

  74. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67 (Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t).

    Article  PubMed  Google Scholar 

  75. Bollmann MD, Revelly JP, Tappy L, Berger MM, Schaller MD, Cayeux MC, et al. Effect of bicarbonate and lactate buffer on glucose and lactate metabolism during hemodiafiltration in patients with multiple organ failure. Intensive Care Med. 2004;30(6):1103–10 (Clinical Trial Comparative Study Randomized Controlled Trial).

    Article  PubMed  Google Scholar 

  76. Honore PM, De Waele E, Jacobs R, Mattens S, Rose T, Joannes-Boyau O, et al. Nutritional and metabolic alterations during continuous renal replacement therapy. Blood Purif. 2013;35(4):279–84.

    Article  CAS  PubMed  Google Scholar 

  77. Berger MM, Shenkin A. Update on clinical micronutrient supplementation studies in the critically ill. Curr Opin Clin Nutr Metab Care. 2006;9(6):711–6 (Review).

    Article  CAS  PubMed  Google Scholar 

  78. Berger MM, Shenkin A, Revelly JP, Roberts E, Cayeux MC, Baines M, et al. Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr. 2004;80(2):410–6 (Clinical Trial Randomized Controlled Trial).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashita Tolwani MD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Harms, J., Wille, K., Tolwani, A. (2016). Complications of Continuous Renal Replacement Therapy (CRRT). In: Magee, C., Tucker, J., Singh, A. (eds) Core Concepts in Dialysis and Continuous Therapies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7657-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7657-4_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7655-0

  • Online ISBN: 978-1-4899-7657-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics