Skip to main content

Bartlett-Type Correction of Distance Metric Test

  • Chapter
  • First Online:
Festschrift in Honor of Peter Schmidt

Abstract

We derive a corrected distance metric (DM) test of general restrictions. The correction factor is a function of the uncorrected statistic, and the new statistic is Bartlett-type. In the setting of covariance structure models, we show using simulations that the quality of the new approximation is good and often remarkably good. Especially at around the 95th percentile, the distribution of the corrected test statistic is strikingly close to the relevant asymptotic distribution. This is true for various sample sizes, distributions, and degrees of freedom of the model. As a by-product we provide an intuition for the well-known observation in labor economic applications that using longer panels results in a reversal of the original inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As noted by a referee this means that we ignore the estimation error in W N , or more precisely, that we assume that estimation error, coupled with some nonlinearities we disregard, has, in some sense, no bigger effect than the estimation error in \(\hat{\theta }\) and the nonlinearities we focus on.

References

  • Abowd JM, Card D (1987) Intertemporal labor supply and long-term employment contracts. Am Econ Rev 77:50–68

    Google Scholar 

  • Abowd JM, Card D (1989) On the Covariance structure of earnings and hours changes. Econometrica 57:411–445

    Article  Google Scholar 

  • Baker M (1997) Growth-rate heterogeneity and the covariance structure of life-cycle earnings. J Labor Econ 15:338–375

    Google Scholar 

  • Baker M, Solon G (2003) Earnings dynamics and inequality among Canadian men, 1976–1992: evidence from longitudinal income tax records. J Labor Econ 21:289–321

    Article  Google Scholar 

  • Barndorff-Nielsen O, Cox DR (1979) Edgeworth and saddle-point approximations with statistical applications. J R Stat Soc B (Methodol) 41:279–312

    Google Scholar 

  • Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc Lond A Math Phys Sci 160:268–282

    Article  Google Scholar 

  • Breusch TS, Schmidt P (1988) Alternative forms of the Wald test: how long is a piece of string? Commun Stat Theory Methods 17:2789–2795

    Article  Google Scholar 

  • Browne MW (1984) Asymptotically distribution-free methods for the analysis of covariance structures. Br J Math Stat Psychol 37:62–83

    Article  Google Scholar 

  • Chou C-P, Bentler PM, Satorra A (1991) Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: a Monte Carlo study. Br J Math Stat Psychol 44:347–357

    Article  Google Scholar 

  • Clark TE (1996) Small-sample properties of estimators of nonlinear models of covariance structure. J Bus Econ Stat 14:367–373

    Google Scholar 

  • Cribari-Neto F, Cordeiro GM (1996) On Bartlett and Bartlett-type corrections. Econ Rev 15:339–367

    Article  Google Scholar 

  • Hall P (1992) The bootstrap and the edgeworth expansion. Springer, New York

    Book  Google Scholar 

  • Hansen LP (1982) Large sample properties of generalized method of moments estimators. Econometrica 50:1029–1054

    Article  Google Scholar 

  • Hansen BE (2006) Edgeworth Expansions for the Wald and GMM statistics for nonlinear restrictions. In: Corbae D, Durlauf SN, Hansen BE (eds) Econometric theory and practice: frontiers of analysis and applied research. Cambridge University Press, Cambridge/New York, pp 9–35

    Chapter  Google Scholar 

  • Hansen L, Heaton J, Yaron A (1996) Finite-sample properties of some alternative GMM estimators. J Bus Econ Stat 14:262–280

    Google Scholar 

  • Hausman J, Kuersteiner G (2008) Difference in difference meets generalized least squares: higher order properties of hypotheses tests. J Econ 144:371–391

    Article  Google Scholar 

  • Herzog W, Boomsma A, Reinecke S (2007) The model-size effect on traditional and modified tests of covariance structures. Struct Equ Model Multidisciplinary J 14:361–390

    Article  Google Scholar 

  • Hoogland JJ, Boomsma A (1998) Robustness studies in covariance structure modeling: an overview and a meta-analysis. Sociol Methods Res 26:329–367

    Article  Google Scholar 

  • Kallenberg WCM (1993) Interpretation and manipulation of Edgeworth expansions. Ann Inst Stat Math 45:341–351

    Article  Google Scholar 

  • Kenny DA, McCoach DB (2003) Effect of the number of variables on measures of fit in structural equation modeling. Struct Equ Model Multidisciplinary J 10:333–351

    Article  Google Scholar 

  • Kollo T, von Rosen D (2005) Advanced multivariate statistics with matrices. Springer, Dordrecht

    Google Scholar 

  • Korin BP (1968) On the distribution of a statistic used for testing a covariance matrix. Biometrika 55:171–178

    Article  Google Scholar 

  • Linton O (2002) Edgeworth approximations for semiparametric instrumental variable estimators and test statistics. J Econom 106:325–368

    Article  Google Scholar 

  • MaCurdy TE (1982) The use of time series processes to model the error structure of earnings in a longitudinal data analysis. J Econom 18:83–114

    Article  Google Scholar 

  • Magee L (1989) An Edgeworth test size correction for the linear model with AR(1) errors. Econometrica 57:661–674

    Article  Google Scholar 

  • Muthen B, Kaplan D (1992) A comparison of some methodologies for the factor analysis of non-normal Likert variables: a note on the size of the model. Br J Math Stat Psychol 45:19–30

    Article  Google Scholar 

  • Nagarsenker BN, Pillai KCS (1973) Distribution of the likelihood ratio criterion for testing a hypothesis specifying a covariance matrix. Biometrika 60:359–364

    Article  Google Scholar 

  • Newey W, McFadden D (1994) Large sample estimation and hypothesis testing. In: Handbook of econometrics, vol IV. North-Holland, Amsterdam, pp 2113–2241

    Google Scholar 

  • Newey WK, West KD (1987) Hypothesis testing with efficient method of moments estimation. Int Econ Rev 28:777–787

    Article  Google Scholar 

  • Ogasawara H (2009) Asymptotic expansions of the distributions of the chi-square statistic based on the asymptotically distribution-free theory in covariance structures. J Stat Plan Inference 139:3246–3261

    Article  Google Scholar 

  • Phillips PCB (1977) A general theorem in the theory of asymptotic expansions as approximations to the finite sample distributions of econometric estimators. Econometrica 45:1517–1534

    Article  Google Scholar 

  • Phillips PCB (1978) Edgeworth and saddlepoint approximations in the first-order noncircular autoregression. Biometrika 65:91–98

    Article  Google Scholar 

  • Phillips PCB (1983) ERA’s: a new approach to small sample theory. Econometrica 51:1505–1525

    Article  Google Scholar 

  • Phillips PCB, Park JY (1988) On the formulation of Wald tests of nonlinear restrictions. Econometrica 56:1065–1083

    Article  Google Scholar 

  • Reid N (1991) Approximations and asymptotics. In: Hinkley D, Reid N, Snell E (eds) Statistical theory and modeling: in honour of Sir David Cox, FRS. Chapman and Hall, London

    Google Scholar 

  • Rothenberg T (1984) Approximating the distributions of econometric estimators and test statistics. In: Griliches Z, Intriligator MD (eds) Handbook of econometrics, vol II. North-Holland, Amsterdam, pp 881–935

    Google Scholar 

  • Sargan JD, Satchell SE (1986) A theorem of validity for edgeworth expansions. Econometrica 54:189–213

    Article  Google Scholar 

  • Satorra A, Bentler P (2001) A scaled difference chi-square test statistic for moment structure analysis. Psychometrika 66:507–514

    Article  Google Scholar 

  • Sugiura N (1969) Asymptotic expansions of the distributions of the likelihood ratio criteria for covariance matrix. Ann Math Stat 40:2051–2063

    Article  Google Scholar 

  • Topel RH, Ward MP (1992) Job mobility and the careers of young men. Q J Econ 107:439–479

    Article  Google Scholar 

  • Yanagihara H, Matsumoto C, Tonda T (2004) Asymptotic expansion of the null distribution of the modified normal likelihood ratio criterion for testing \(\Sigma = \Sigma _{0}\) under nonnormality. Hiroshima Math J 34:81–100

    Google Scholar 

  • Yuan K-H, Bentler PM (1997) Mean and covariance structure analysis: theoretical and practical improvements. J Am Stat Assoc 92:767–774

    Article  Google Scholar 

Download references

Acknowledgements

Helpful comments from Gordon Fisher, Nikolay Gospodinov, Jorgen Hansen, Lynda Khalaf, Eric Renault, Paul Rilstone, seminar participants at University of Manitoba (Department of Economics) and Ryerson University (Department of Economics) and participants of the 26th annual meeting of Canadian Econometric Study Group (CESG), the 43rd Conference of the Canadian Economics Association (CEA), and 17th International Panel Data Conference are gratefully acknowledged. Research for this paper was supported by the FQRSC Doctoral Scholarship (Huang), the J. W. McConnell Memorial Graduate Fellowship (Huang) and an FQRSC Research Grant (Prokhorov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Prokhorov .

Editor information

Editors and Affiliations

Appendices

Appendix 1

13.1.1 Theorem 3.1.1 of Kollo and Rosen (2005)

Let {x n } and \(\{\varepsilon _{n}\}\) be sequences of random p-vectors and positive numbers, respectively, and let \(x_{n} - x_{0} = o_{p}(\varepsilon _{n})\), where \(\varepsilon _{n} \rightarrow 0\) as n → . If the function f(x) from \({\mathbb{R}}^{p}\) to \({\mathbb{R}}^{s}\) has continuous partial derivatives up to the order \((\mathcal{M} + 1)\) in a neighborhood \(\mathcal{D}\) of a point x 0, then the function f(x) can be expanded at the point x 0 into the Taylor series

$$\displaystyle{ f(x) = f(x_{0})+\sum _{k=1}^{\mathcal{M}}\frac{1} {k!}\left (I_{s} \otimes {(x - x_{0})}^{\otimes (k-1)}\right ){^\prime}\left (\frac{{d}^{k}f(x)} {d{x}^{k}} \right ){^\prime}_{x=x_{0}}(x-x_{0})+o{(\rho }^{\mathcal{M}}(x,x_{ 0})), }$$

where the Kroneckerian power A k for any matrix A is given by \({A}^{\otimes k} =\mathop{\underbrace{ A \otimes \cdots \otimes A}}\limits _{\text{k}\ \text{times}}\) with A ⊗0 = 1, ρ(. , . ) is the Euclidean distance in \({\mathbb{R}}^{p}\), and the matrix derivative for any matrices Y and X is given by \(\frac{{d}^{k}Y } {d{X}^{k}} = \frac{d} {dX}\left (\frac{{d}^{k-1}Y } {d{X}^{k-1}} \right )\) with \(\frac{dY } {dX} \equiv \frac{dvec{^\prime}Y } {dvecX}\); and

$$\displaystyle\begin{array}{rcl} f(x_{n})& =& f(x_{0}) +\sum _{ k=1}^{\mathcal{M}}\frac{1} {k!}\left (I_{s} \otimes {(x_{n} - x_{0})}^{\otimes (k-1)}\right ){^\prime} {}\\ & & \times \left (\frac{{d}^{k}f(x_{n})} {dx_{n}^{k}} \right ){^\prime}_{x_{n}=x_{0}}(x_{n} - x_{0}) + o_{p}(\varepsilon _{n}^{\mathcal{M}}). {}\\ \end{array}$$

Appendix 2

13.2.1 Proofs

Proof of Theorem 1: Write (13.11) as

$$\displaystyle{ DM\mathop{\cong}1_{DM} + 2_{DM} + 3_{DM} + 4_{DM}, }$$
(13.31)

where,

$$\displaystyle\begin{array}{rcl} & & 1_{DM} = vec{^\prime}G_{N}(\hat{\theta }_{N})M_{1}vecG_{N}(\hat{\theta }_{N}), {}\\ & & 2_{DM} = \mathbb{M}_{N}{^\prime}(\hat{\theta }_{N})M_{2}vecD_{N}(\hat{\theta }_{N}), {}\\ & & 3_{DM} = -{N}^{-1/2}vec{^\prime}G_{ N}(\hat{\theta }_{N})M_{3}vecD_{N}(\hat{\theta }_{N}), {}\\ & & 4_{DM} = {N}^{-1}\frac{1} {4}vec{^\prime}D_{N}(\hat{\theta }_{N})M_{4}vecD_{N}(\hat{\theta }_{N}). {}\\ \end{array}$$

Taking Taylor expansions of \(\mathbb{M}_{N}(\hat{\theta }_{N})\), \(vec\,G_{N}(\hat{\theta }_{N})\) and \(vec\,D_{N}(\hat{\theta }_{N})\) about θ 0 and using (13.5) and (13.7), we have

$$\displaystyle{ \begin{array}{ll} \mathop{\mathbb{M}_{N}(\hat{\theta }_{N})}\limits_{k \times 1}& = \mathbb{M}_{N}(\theta _{0}) + G{^\prime}(\hat{\theta }_{N} -\theta _{0}) + \frac{1} {2}[I_{k} \otimes (\hat{\theta }_{N} -\theta _{0}){^\prime}]D{^\prime}(\hat{\theta }_{N} -\theta _{0}) + o_{p}({N}^{-1}) \\ & = -{N}^{-1/2}\bar{q} + {N}^{-1/2}G{^\prime}{B}^{-1}G\bar{q} + {N}^{-1}\frac{1} {2}(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}{B}^{-1})D{^\prime}{B}^{-1}G\bar{q} + o_{ p}({N}^{-1}),\\ \end{array} }$$
$$\displaystyle{ \begin{array}{ll} \mathop{vec\,G_{N}(\hat{\theta }_{N})}\limits_{pk \times 1}& = vecG + D{^\prime}(\hat{\theta }_{N} -\theta _{0}) + \frac{1} {2}[I_{pk} \otimes (\hat{\theta }_{N} -\theta _{0}){^\prime}]C{^\prime}(\hat{\theta }_{N} -\theta _{0}) + o_{p}({N}^{-1}) \\ & = vecG + {N}^{-1/2}D{^\prime}{B}^{-1}G\bar{q} + {N}^{-1}\frac{1} {2}(I_{pk} \otimes \bar{ q}{^\prime}G{^\prime}{B}^{-1})C{^\prime}{B}^{-1}G\bar{q} + o_{ p}({N}^{-1}),\\ \end{array} }$$
$$\displaystyle{ \begin{array}{ll} \mathop{vec\,D_{N}(\hat{\theta }_{N})}\limits_{{p}^{2}k \times 1}& = vecD + C{^\prime}(\hat{\theta }_{N} -\theta _{0}) + o_{p}({N}^{-1/2}) \\ & = vecD + {N}^{-1/2}C{^\prime}{B}^{-1}G\bar{q} + o_{p}({N}^{-1/2}).\end{array} }$$

Note that we do not need to expand \(vecD_{N}(\hat{\theta }_{N})\) further for our purpose. Substituting these expressions into the terms of (13.31) gives:

$$\displaystyle\begin{array}{rcl} 1_{DM}& =& vec{^\prime}G_{N}(\hat{\theta }_{N})M_{1}vecG_{N}(\hat{\theta }_{N}) \\ & =& vec{^\prime}GM_{1}vecG + {N}^{-1/2}2\bar{q}{^\prime}G{^\prime}{B}^{-1}DM_{ 1}vecG \\ & & +\,{N}^{-1}[\bar{q}{^\prime}G{^\prime}{B}^{-1}DM_{ 1}D{^\prime}{B}^{-1}G\bar{q} +\bar{ q}{^\prime}G{^\prime}{B}^{-1}C(I_{ pk} \otimes {B}^{-1}G\bar{q})M_{ 1}vecG] \\ & & +\,o_{p}({N}^{-1}) \\ & =& \bar{q}{^\prime}P\bar{q} + {N}^{-1/2}u_{ 1}(\bar{q}) + {N}^{-1}v_{ 1}(\bar{q}) + o_{p}({N}^{-1}), {}\end{array}$$
(13.32)

where

$$\displaystyle{ \mathop{P}\limits_{k \times k} \equiv G{^\prime}\mathbb{H}G }$$

is a projection matrix, and

$$\displaystyle\begin{array}{rcl} & & u_{1}(\bar{q}) = 2\bar{q}{^\prime}G{^\prime}{B}^{-1}DM_{ 1}vecG, {}\\ & & v_{1}(\bar{q}) =\bar{ q}{^\prime}G{^\prime}{B}^{-1}DM_{ 1}D{^\prime}{B}^{-1}G\bar{q} +\bar{ q}{^\prime}G{^\prime}{B}^{-1}C(I_{ pk} \otimes {B}^{-1}G\bar{q})M_{ 1}vecG; {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} 2_{DM}& =& \mathbb{M}_{N}{^\prime}(\hat{\theta }_{N})M_{2}vecD_{N}(\hat{\theta }_{N}) \\ & =& -{N}^{-1/2}\bar{q}{^\prime}M_{ 2}vecD - {N}^{-1}\bar{q}{^\prime}M_{ 2}C{^\prime}{B}^{-1}G\bar{q} \\ & & +\,{N}^{-1/2}\bar{q}{^\prime}G{^\prime}{B}^{-1}GM_{ 2}vecD + {N}^{-1}\bar{q}{^\prime}G{^\prime}{B}^{-1}GM_{ 2}C{^\prime}{B}^{-1}G\bar{q} \\ & & +\,{N}^{-1}\frac{1} {2}\bar{q}{^\prime}G{^\prime}{B}^{-1}D(I_{ k} \otimes {B}^{-1}G\bar{q})M_{ 2}vecD + o_{p}({N}^{-1}) \\ & =& {N}^{-1/2}(\bar{q}{^\prime}G{^\prime}{B}^{-1}M_{ 2}vecD -\bar{ q}{^\prime}M_{2}vecD) \\ & & +\,{N}^{-1}[\bar{q}{^\prime}G{^\prime}{B}^{-1}GM_{ 2}C{^\prime}{B}^{-1}G\bar{q} -\bar{ q}{^\prime}M_{ 2}C{^\prime}{B}^{-1}G\bar{q} \\ & & \quad \quad \quad \quad + \frac{1} {2}\bar{q}{^\prime}G{^\prime}{B}^{-1}D(I_{ k} \otimes {B}^{-1}G\bar{q})M_{ 2}vecD] + o_{p}({N}^{-1}) \\ & =& {N}^{-1/2}u_{ 2}(\bar{q}) + {N}^{-1}v_{ 2}(\bar{q}) + o_{p}({N}^{-1}), {}\end{array}$$
(13.33)

where

$$\displaystyle\begin{array}{rcl} u_{2}(\bar{q})& =& \bar{q}{^\prime}G{^\prime}{B}^{-1}GM_{ 2}vecD -\bar{ q}{^\prime}M_{2}vecD \\ & =& \bar{q}{^\prime}(G{^\prime}{B}^{-1}G - I_{ k})M_{2}vecD, \\ v_{2}(\bar{q})& =& \bar{q}{^\prime}G{^\prime}{B}^{-1}GM_{ 2}C{^\prime}{B}^{-1}G\bar{q} -\bar{ q}{^\prime}M_{ 2}C{^\prime}{B}^{-1}G\bar{q} \\ & & +\,\frac{1} {2}\bar{q}{^\prime}G{^\prime}{B}^{-1}D(I_{ k} \otimes {B}^{-1}G\bar{q})M_{ 2}vecD \\ & =& \bar{q}{^\prime}(G{^\prime}{B}^{-1}G - I_{ k})M_{2}C{^\prime}{B}^{-1}G\bar{q} + \frac{1} {2}\bar{q}{^\prime}G{^\prime}{B}^{-1}D(I_{ k} \otimes {B}^{-1}G\bar{q})M_{ 2}vecD; \\ 3_{DM}& =& -{N}^{-1/2}vec{^\prime}G_{ N}(\hat{\theta }_{N})M_{3}vecD_{N}(\hat{\theta }_{N}) \\ & =& -{N}^{-1/2}vec{^\prime}GM_{ 3}vecD-{N}^{-1}vec{^\prime}GM_{ 3}C{^\prime}{B}^{-1}G\bar{q} \\ & & -\,{N}^{-1}\bar{q}{^\prime}G{^\prime}{B}^{-1}DM_{ 3}vecD + o_{p}({N}^{-1}) \\ & =& {N}^{-1/2}u_{ 3}(\bar{q}) + {N}^{-1}v_{ 3}(\bar{q}) + o_{p}({N}^{-1}), {}\end{array}$$
(13.34)

and

$$\displaystyle\begin{array}{rcl} u_{3}(\bar{q})& =& -vec{^\prime}GM_{3}vecD, {}\\ v_{3}(\bar{q})& =& -vec{^\prime}GM_{3}C{^\prime}{B}^{-1}G\bar{q} -\bar{ q}{^\prime}G{^\prime}{B}^{-1}DM_{ 3}vecD {}\\ & =& -\bar{q}{^\prime}G{^\prime}{B}^{-1}CM_{ 3}{^\prime}vecG -\bar{ q}{^\prime}G{^\prime}{B}^{-1}DM_{ 3}vecD; {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} 4_{DM}& =& {N}^{-1}\frac{1} {4}vec{^\prime}D_{N}(\hat{\theta }_{N})M_{4}vecD_{N}(\hat{\theta }_{N}) \\ & =& {N}^{-1}\frac{1} {4}vec{^\prime}DM_{4}vecD + o_{p}({N}^{-1}) \\ & =& {N}^{-1}v_{ 4}(\bar{q}) + o_{p}({N}^{-1}), {}\end{array}$$
(13.35)

where

$$\displaystyle{ v_{4}(\bar{q}) = \frac{1} {4}vec{^\prime}DM_{4}vecD. }$$

Finally, collecting the terms (13.32)–(13.35) gives Eq. (13.12). □ 

Proof of Lemma 1: From Theorem 1, if \(u_{i}(\bar{q})\) (i = 1, 2, 3) and \(v_{i}(\bar{q})\) (i = 1, 2, 3, 4) could be rewritten as

$$\displaystyle{ u_{i}(\bar{q}) = vec{^\prime}J_{i}(\bar{q} \otimes \bar{ q} \otimes \bar{ q}), }$$
(13.36)
$$\displaystyle{ v_{i}(\bar{q}) = tr[L_{i}(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})], }$$
(13.37)

then,

$$\displaystyle\begin{array}{rcl} & & u(\bar{q}) = vec{^\prime}J(\bar{q} \otimes \bar{ q} \otimes \bar{ q}), {}\\ & & v(\bar{q}) = tr[L(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})], {}\\ \end{array}$$

where

$$\displaystyle{ vecJ = vecJ_{1} + vecJ_{2} + vecJ_{3}, }$$

and

$$\displaystyle{ L = L_{1} + L_{2} + L_{3} + L_{4}. }$$

Therefore, the proof is reduced to showing (13.36) and (13.37).

Using

$$\displaystyle\begin{array}{rcl} & & (A \otimes C)(B \otimes D) = (AB) \otimes (CD), {}\\ & & K_{p,q}vecA = vec(A{^\prime}), {}\\ & & A \otimes B = K_{p,r}(B \otimes A)K_{s,q}, {}\\ \end{array}$$

for A: p × q and B: r × s where K is the commutation matrix, we can rewrite (13.14):

$$\displaystyle\begin{array}{rcl} u_{1}(\bar{q})& =& 2\bar{q}{^\prime}G{^\prime}{B}^{-1}D(I_{ k} \otimes \mathbb{H}G\bar{q})vec(\bar{q}{^\prime}G{^\prime}\mathbb{H}G) \\ & =& 2\bar{q}{^\prime}G{^\prime}\mathbb{H}G(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})(\bar{q}{^\prime}G{^\prime}{B}^{-1} \otimes I_{ pk})vec(D{^\prime}) \\ & =& 2\bar{q}{^\prime}G{^\prime}\mathbb{H}G(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})(I_{pk} \otimes \bar{ q}{^\prime}G{^\prime}{B}^{-1})vecD \\ & =& 2(\bar{q}{^\prime}G{^\prime}\mathbb{H}G \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H} \otimes \bar{ q}{^\prime}G{^\prime}{B}^{-1})vecD \\ & =& 2(\bar{q}{^\prime} \otimes \bar{ q}{^\prime} \otimes \bar{ q}{^\prime})(G{^\prime}\mathbb{H}G \otimes G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1})vecD \\ & =& vec{^\prime}J_{1}(\bar{q} \otimes \bar{ q} \otimes \bar{ q}), {}\end{array}$$
(13.38)

where

$$\displaystyle{ vecJ_{1} = 2(G{^\prime}\mathbb{H}G \otimes G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1})vecD. }$$
(13.39)

Let

$$\displaystyle{ R_{1} = (\mathbb{H}G \otimes {B}^{-1}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})(G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1}), }$$
(13.40)

partition vecD as

$$\displaystyle{ \mathop{vecD}\limits_{{p}^{2}k\times 1} = \left [\begin{array}{*{10}c} V _{D1} \\ V _{D2}\\ \vdots \\ V _{Dk} \end{array} \right ] }$$
(13.41)

where each subvector V Di is p 2 × 1, and let

$$\displaystyle{ V _{D} = V _{D1}V _{D1}{^\prime} + V _{D2}V _{D2}{^\prime} + \cdots + V _{Dk}V _{Dk}{^\prime}. }$$
(13.42)

Then, since

$$\displaystyle{ \begin{array}{ll} (I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})D{^\prime}{B}^{-1}G\bar{q}& = (I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})(\bar{q}{^\prime}G{^\prime}{B}^{-1} \otimes I_{pk})vec(D{^\prime}) \\ & = (I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})(I_{pk} \otimes \bar{ q}{^\prime}G{^\prime}{B}^{-1})vecD \\ & = (I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H} \otimes \bar{ q}{^\prime}G{^\prime}{B}^{-1})vecD, \end{array} }$$

the first term of \(v_{1}(\bar{q})\) in (13.17) becomes

$$\displaystyle\begin{array}{rcl} & & \bar{q}{^\prime}G{^\prime}{B}^{-1}D(I_{ k} \otimes \mathbb{H}G\bar{q})(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})D{^\prime}{B}^{-1}G\bar{q} \\ & & \quad = vec{^\prime}D(I_{k} \otimes \mathbb{H}G\bar{q} \otimes {B}^{-1}G\bar{q})(I_{ k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H} \otimes \bar{ q}{^\prime}G{^\prime}{B}^{-1})vecD \\ & & \quad = vec{^\prime}D(I_{k} \otimes R_{1})vecD \\ & & \quad = \left [\begin{array}{*{10}c} V _{D1}{^\prime} & V _{D2}{^\prime} & \cdots &V _{Dk}{^\prime} \end{array} \right ]\left [\begin{array}{*{10}c} R_{1} & & & 0 \\ &R_{1} & &\\ & & \ddots& \\ 0 & & &R_{1} \end{array} \right ]\left [\begin{array}{*{10}c} V _{D1} \\ V _{D2}\\ \vdots \\ V _{Dk} \end{array} \right ] \\ & & \quad = V _{D1}{^\prime}R_{1}V _{D1} + V _{D2}{^\prime}R_{1}V _{D2} + \cdots + V _{Dk}{^\prime}R_{1}V _{Dk} \\ & & \quad = tr[(V _{D1}V _{D1}{^\prime} + V _{D2}V _{D2}{^\prime} + \cdots + V _{Dk}V _{Dk}{^\prime})R_{1}] \\ & & \quad = tr[V _{D}(\mathbb{H}G \otimes {B}^{-1}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})(G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1})] \\ & & \quad = tr[(G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1})V _{ D}(\mathbb{H}G \otimes {B}^{-1}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})]. {}\end{array}$$
(13.43)

Similarly, let

$$\displaystyle{ R_{2} = (\mathbb{H}G \otimes {B}^{-1}G)(\bar{q} \otimes \bar{ q}), }$$
(13.44)
$$\displaystyle{ R_{3} =\bar{ q}{^\prime}G{^\prime}\mathbb{H}, }$$
(13.45)

partition GB −1 C and vecG as

$$\displaystyle{ \mathop{G{^\prime}{B}^{-1}C}\limits_{k\times {p}^{2}k} = \left [\begin{array}{*{10}c} M_{ GC1} & M_{GC2} & \cdots &M_{GCk} \end{array} \right ], }$$
(13.46)
$$\displaystyle{ \mathop{vecG}\limits_{pk\times 1} = \left [\begin{array}{*{10}c} V _{G1} \\ V _{G2}\\ \vdots \\ V _{Gk} \end{array} \right ], }$$
(13.47)

where M GCi and V Gi are k × p 2 and p × 1 respectively, and let

$$\displaystyle{ M_{V } = M_{GC1}{^\prime} \otimes V _{G1}{^\prime} + M_{GC2}{^\prime} \otimes V _{G2}{^\prime} + \cdots + M_{GCk}{^\prime} \otimes V _{Gk}{^\prime}. }$$
(13.48)

Then, since

$$\displaystyle{ \begin{array}{ll} \bar{q}{^\prime}m\bar{q}{^\prime}M(\bar{q} \otimes \bar{ q})& = m{^\prime}\bar{q}\bar{q}{^\prime}M(\bar{q} \otimes \bar{ q}) \\ & = [(\bar{q} \otimes \bar{ q}){^\prime}M{^\prime} \otimes m{^\prime}]vec(\bar{q}\bar{q}{^\prime}) \\ & = (\bar{q} \otimes \bar{ q}){^\prime}(M{^\prime} \otimes m{^\prime})(\bar{q} \otimes \bar{ q}) \\ & = tr[(M{^\prime} \otimes m{^\prime})(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})] \end{array} }$$

for some vector m and matrix M of appropriate sizes, the second term of \(v_{1}(\bar{q})\) in (13.17) becomes

$$\displaystyle\begin{array}{rcl} & & \bar{q}{^\prime}G{^\prime}{B}^{-1}C(I_{ pk} \otimes {B}^{-1}G\bar{q})(I_{ k} \otimes \mathbb{H}G\bar{q})(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})vecG \\ & & \quad =\bar{ q}{^\prime}G{^\prime}{B}^{-1}C(I_{ k} \otimes R_{2})(I_{k} \otimes R_{3})vecG \\ & & \quad =\bar{ q}{^\prime}\left [\begin{array}{*{10}c} M_{GC1} & M_{GC2} & \cdots &M_{GCk} \end{array} \right ]\left [\begin{array}{*{10}c} R_{2} & & & 0 \\ &R_{2} & &\\ & & \ddots& \\ 0 & & &R_{2} \end{array} \right ]\left [\begin{array}{*{10}c} R_{3} & & & 0 \\ &R_{3} & &\\ & & \ddots& \\ 0 & & &R_{3} \end{array} \right ]\left [\begin{array}{*{10}c} V _{G1} \\ V _{G2}\\ \vdots \\ V _{Gk} \end{array} \right ] \\ & & \quad =\sum _{ i=1}^{k}(\bar{q}{^\prime}M_{ GCi}R_{2}R_{3}V _{Gi}) \\ & & \quad = tr\sum _{i=1}^{k}[\bar{q}{^\prime}M_{ GCi}(\mathbb{H}G \otimes {B}^{-1}G)(\bar{q} \otimes \bar{ q})\bar{q}{^\prime}G{^\prime}\mathbb{H}V _{ Gi}] \\ & & \quad = tr\sum _{i=1}^{k}[\bar{q}{^\prime}G{^\prime}\mathbb{H}V _{ Gi}\bar{q}{^\prime}M_{GCi}(\mathbb{H}G \otimes {B}^{-1}G)(\bar{q} \otimes \bar{ q})] \\ & & \quad = tr\sum _{i=1}^{k}\left \{\{[(G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1})M_{ GCi}{^\prime}] \otimes V _{Gi}{^\prime}\mathbb{H}G\}(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})\right \} \\ & & \quad = tr\sum _{i=1}^{k}[(G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1})(M_{ GCi}{^\prime} \otimes V _{Gi}{^\prime})(I_{k} \otimes \mathbb{H}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})] \\ & & \quad = tr[(G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1})M_{ V }(I_{k} \otimes \mathbb{H}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})]. {}\end{array}$$
(13.49)

From (13.43) and (13.49), (13.17) can be rewritten as

$$\displaystyle{ v_{1}(\bar{q}) = tr[L_{1}(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})], }$$
(13.50)

where

$$\displaystyle{ L_{1} = (G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1})V _{ D}(\mathbb{H}G \otimes {B}^{-1}G) + (G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1})M_{ V }(I_{k} \otimes \mathbb{H}G). }$$
(13.51)

Similar to \(u_{1}(\bar{q})\), \(u_{2}(\bar{q})\) in (13.15) can be rewritten as

$$\displaystyle\begin{array}{rcl} u_{2}(\bar{q})& =& \bar{q}{^\prime}(G{^\prime}{B}^{-1}G - I_{ k})(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})vecD \\ & =& (\bar{q}{^\prime} \otimes \bar{ q}{^\prime} \otimes \bar{ q}{^\prime})[(G{^\prime}{B}^{-1}G - I_{ k}) \otimes G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H}]vecD \\ & =& vec{^\prime}J_{2}(\bar{q} \otimes \bar{ q} \otimes \bar{ q}), {}\end{array}$$
(13.52)

where

$$\displaystyle{ vecJ_{2} = [(G{^\prime}{B}^{-1}G - I_{ k}) \otimes G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H}]vecD. }$$
(13.53)

The first term of \(v_{2}(\bar{q})\) in (13.18) can be written as

$$\displaystyle{ \bar{q}{^\prime}G{^\prime}{B}^{-1}C(I_{ k} \otimes \mathbb{H}G\bar{q} \otimes \mathbb{H}G\bar{q})(G{^\prime}{B}^{-1}G - I_{ k})\bar{q}. }$$

Since

$$\displaystyle{ \begin{array}{ll} (G{^\prime}{B}^{-1}G - I_{k})\bar{q}& = vec[\bar{q}{^\prime}(G{^\prime}{B}^{-1}G - I_{k})] \\ & = (I_{k} \otimes \bar{ q}{^\prime})vec(G{^\prime}{B}^{-1}G - I_{k}), \end{array} }$$

and \(vec(G{^\prime}{B}^{-1}G - I_{k})\) can be partitioned as

$$\displaystyle{ vec(G{^\prime}{B}^{-1}G-I_{ k}) = \left [\begin{array}{*{10}c} V _{GI1} \\ V _{GI2}\\ \vdots \\ V _{GIk} \end{array} \right ] }$$
(13.54)

where V GIi is k × 1, we may mimic the second term of \(v_{1}(\bar{q})\) and rewrite the first term of \(v_{2}(\bar{q})\) further as

$$\displaystyle{ \begin{array}{ll} tr\sum _{i=1}^{k}&[\bar{q}{^\prime}M_{GCi}(\mathbb{H}G \otimes \mathbb{H}G)(\bar{q} \otimes \bar{ q})\bar{q}{^\prime}V _{GIi}] \\ & = tr[(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})M_{V I}(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})], \end{array} }$$
(13.55)

where

$$\displaystyle{ M_{V I} = M_{GC1}{^\prime} \otimes V _{GI1}{^\prime} + M_{GC2}{^\prime} \otimes V _{GI2}{^\prime} + \cdots + M_{GCk}{^\prime} \otimes V _{GIk}{^\prime}. }$$
(13.56)

Similar to the first term of \(v_{1}(\bar{q})\), since

$$\displaystyle{ \bar{q}{^\prime}G{^\prime}{B}^{-1}D = vec{^\prime}(\bar{q}{^\prime}G{^\prime}{B}^{-1}D) = vec{^\prime}D(I_{ pk} \otimes {B}^{-1}G\bar{q}), }$$

the second term of \(v_{2}(\bar{q})\) in (13.18) can be rewritten as

$$\displaystyle\begin{array}{rcl} & & \frac{1} {2}vec{^\prime}D(I_{k} \otimes {B}^{-1}G\bar{q} \otimes {B}^{-1}G\bar{q})(I_{ k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})vecD \\ & & \quad = \frac{1} {2}tr[V _{D}({B}^{-1}G \otimes {B}^{-1}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})] \\ & & \quad = tr[\frac{1} {2}(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})V _{D}({B}^{-1}G \otimes {B}^{-1}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})]. {}\end{array}$$
(13.57)

From (13.55) and (13.57), we have

$$\displaystyle{ v_{2}(\bar{q}) = tr[L_{2}(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})], }$$
(13.58)

where

$$\displaystyle{ L_{2} = (G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})M_{V I} + \frac{1} {2}(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})V _{D}({B}^{-1}G \otimes {B}^{-1}G). }$$
(13.59)

Since

$$\displaystyle\begin{array}{rcl} & & vec{^\prime}G(I_{k} \otimes \mathbb{H}G\bar{q}) {}\\ & & \quad = [(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})vecG]{^\prime} {}\\ & & \quad =\bar{ q}{^\prime}G{^\prime}\mathbb{H}G, {}\\ \end{array}$$

(13.16) becomes

$$\displaystyle\begin{array}{rcl} u_{3}(\bar{q})& =& -\bar{q}{^\prime}G{^\prime}\mathbb{H}G(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})vecD \\ & =& -(\bar{q}{^\prime} \otimes \bar{ q}{^\prime} \otimes \bar{ q}{^\prime})(G{^\prime}\mathbb{H}G \otimes G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})vecD \\ & =& vec{^\prime}J_{3}(\bar{q} \otimes \bar{ q} \otimes \bar{ q}), {}\end{array}$$
(13.60)

where

$$\displaystyle{ vecJ_{3} = -(G{^\prime}\mathbb{H}G \otimes G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})vecD. }$$
(13.61)

Similar to the second term of \(v_{1}(\bar{q})\), the first term of \(v_{3}(\bar{q})\) in (13.19) can be rewritten as

$$\displaystyle\begin{array}{rcl} & & -\bar{q}{^\prime}G{^\prime}{B}^{-1}C(I_{ k} \otimes \mathbb{H}G\bar{q} \otimes \mathbb{H}G\bar{q})(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})vecG \\ & & \quad = tr\sum _{i=1}^{k}[-\bar{q}{^\prime}M_{ GCi}(\mathbb{H}G \otimes \mathbb{H}G)(\bar{q} \otimes \bar{ q})\bar{q}{^\prime}G{^\prime}\mathbb{H}V _{Gi}] \\ & & \quad = tr[-(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})M_{V }(I_{k} \otimes \mathbb{H}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})].{}\end{array}$$
(13.62)

Similar to the second term of \(v_{2}(\bar{q})\), the second term of \(v_{3}(\bar{q})\) in (13.19) can be rewritten as

$$\displaystyle\begin{array}{rcl} & & -\bar{q}{^\prime}G{^\prime}{B}^{-1}D(I_{ k} \otimes \mathbb{H}G\bar{q})(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})vecD \\ & & \quad = -vec{^\prime}D(I_{pk} \otimes {B}^{-1}G\bar{q})(I_{ k} \otimes \mathbb{H}G\bar{q})(I_{k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})vecD \\ & & \quad = -vec{^\prime}D(I_{k} \otimes \mathbb{H}G\bar{q} \otimes {B}^{-1}G\bar{q})(I_{ k} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H} \otimes \bar{ q}{^\prime}G{^\prime}\mathbb{H})vecD \\ & & \quad = tr[-V _{D}(\mathbb{H}G \otimes {B}^{-1}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})] \\ & & \quad = tr[-(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})V _{D}(\mathbb{H}G \otimes {B}^{-1}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})]. {}\end{array}$$
(13.63)

From (13.62) and (13.63), we have

$$\displaystyle{ v_{3}(\bar{q}) = tr[L_{3}(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})], }$$
(13.64)

where

$$\displaystyle{ L_{3} = -(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})M_{V }(I_{k} \otimes \mathbb{H}G) - (G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})V _{D}(\mathbb{H}G \otimes {B}^{-1}G). }$$
(13.65)

Similar to the first term of \(v_{1}(\bar{q})\), \(v_{4}(\bar{q})\) in (13.20) can be easily rewritten as

$$\displaystyle\begin{array}{rcl} v_{4}(\bar{q})& =& \frac{1} {4}tr[V _{D}(\mathbb{H}G \otimes \mathbb{H}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})] \\ & =& tr[\frac{1} {4}(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})V _{D}(\mathbb{H}G \otimes \mathbb{H}G)(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q}{^\prime})] \\ & =& tr[L_{4}(\bar{q}\bar{q}{^\prime} \otimes \bar{ q}\bar{q})], {}\end{array}$$
(13.66)

where

$$\displaystyle{ L_{4} = \frac{1} {4}(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H})V _{D}(\mathbb{H}G \otimes \mathbb{H}G). }$$
(13.67)

By using (13.38), (13.50), (13.52), (13.58), (13.60), (13.64) and (13.66), we obtain (13.36) and (13.37), thus finishing the proof. □ 

Proof of Theorem 2: First, a i and b i are defined (Phillips and Park 1988) as

$$\displaystyle{ a_{i} = tr(A_{i})\;\;(i = 0,1,2), }$$
(13.68)

where

$$\displaystyle\begin{array}{rcl} & & A_{0} = L[(I + K_{k,k})(\bar{P} \otimes \bar{ P}) + vec\bar{P}vec{^\prime}\bar{P}], {}\\ & & A_{1} = L[(I + K_{k,k})(\bar{P} \otimes P + P \otimes \bar{ P}) + vec\bar{P}vec{^\prime}P + vecPvec{^\prime}\bar{P}], {}\\ & & A_{2} = L[(I + K_{k,k})(P \otimes P) + vecPvec{^\prime}P]; {}\\ \end{array}$$
$$\displaystyle{ b_{i} = vec{^\prime}JB_{i}vecJ\;\;(i = 1,2,3), }$$
(13.69)

where

$$\displaystyle\begin{array}{rcl} B_{0}& =& H(\bar{P} \otimes \bar{ P} \otimes \bar{ P}) + H(\bar{P} \otimes vec\bar{P}vec{^\prime}\bar{P})H {}\\ & & \quad +\bar{ P} \otimes K_{k,k}(\bar{P} \otimes \bar{ P}) + K_{k,k}(\bar{P} \otimes \bar{ P}) \otimes \bar{ P} {}\\ & & \quad + K_{k,{k}^{2}}[\bar{P} \otimes K_{k,k}(\bar{P} \otimes \bar{ P})]K_{{k}^{2},k} = C_{0}(\bar{P}),\;say, {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} B_{1}& =& H(P \otimes \bar{ P} \otimes \bar{ P})H {}\\ & & \quad + H(P \otimes vec\bar{P}vec{^\prime}\bar{P} +\bar{ P} \otimes vecPvec{^\prime}\bar{P} +\bar{ P} \otimes vec\bar{P}vec{^\prime}P)H {}\\ & & \quad + P \otimes K_{k,k}(\bar{P} \otimes \bar{ P}) +\bar{ P} \otimes K_{k,k}(P \otimes \bar{ P}) {}\\ & & \quad +\bar{ P} \otimes K_{k,k}(\bar{P} \otimes P) + K_{k,k}(P \otimes \bar{ P}) \otimes \bar{ P} {}\\ & & \quad + K_{k,k}(\bar{P} \otimes \bar{ P}) \otimes \bar{ P} + K_{k,k}(\bar{P} \otimes \bar{ P}) \otimes P {}\\ & & \quad + K_{k,{k}^{2}}\{[P \otimes K_{k,k}(\bar{P} \otimes \bar{ P})] + [\bar{P} \otimes K_{k,k}(P \otimes \bar{ P})] {}\\ & & \quad \quad \quad \quad \quad + [\bar{P} \otimes K_{k,k}(\bar{P} \otimes P)]\}K_{{k}^{2},k} = C_{1}(\bar{P},P),\;say, {}\\ B_{2}& =& C_{1}(P,\bar{P}), {}\\ B_{3}& =& C_{0}(P), {}\\ \end{array}$$

with

$$\displaystyle\begin{array}{rcl} & & H = I + K_{k,{k}^{2}} + K_{{k}^{2},k}, {}\\ & & \bar{P} \equiv I - P. {}\\ \end{array}$$

Secondly, from (13.68),

$$\displaystyle\begin{array}{rcl} a_{0} = tr(A_{0})& =& tr\{L[(I + K_{k,k})(\bar{P} \otimes \bar{ P}) + vec\bar{P}vec{^\prime}\bar{P}]\} \\ & =& tr[(\bar{P} \otimes \bar{ P})L(I + K_{k,k}) + vec{^\prime}\bar{P}Lvec\bar{P}] \\ & =& tr[(\bar{P} \otimes \bar{ P})L(I + K_{k,k})] + tr(vec{^\prime}\bar{P}Lvec\bar{P}).{}\end{array}$$
(13.70)

Using (13.13) and \(\bar{P} \equiv I - P\), we have

$$\displaystyle{ (A{^\prime}{B}^{-1}G)\bar{P} = 0, }$$
(13.71)
$$\displaystyle{ \bar{P}(G{^\prime}{B}^{-1}A) = 0. }$$
(13.72)

Therefore, by (13.21)–(13.25),

$$\displaystyle{ (\bar{P} \otimes \bar{ P})L = 0, }$$
(13.73)

and

$$\displaystyle{ (\mathbb{H}G \otimes {B}^{-1}G)vec\bar{P} = vec({B}^{-1}G\bar{P}G\mathbb{H}) = 0, }$$
(13.74)
$$\displaystyle{ (I_{k} \otimes \mathbb{H}G)vec\bar{P} = vec(\mathbb{H}G\bar{P}) = 0. }$$
(13.75)

Combining (13.74) and (13.75) with (13.22) yields

$$\displaystyle{ L_{1}vec\bar{P} = 0. }$$
(13.76)

Similarly,

$$\displaystyle{ L_{3}vec\bar{P} = 0, }$$
(13.77)
$$\displaystyle{ L_{4}vec\bar{P} = 0, }$$
(13.78)

and

$$\displaystyle{ vec{^\prime}\bar{P}L_{2} = (L_{2}{^\prime}vec\bar{P}){^\prime} = 0. }$$
(13.79)

From (13.76)–(13.79),

$$\displaystyle{ tr(vec{^\prime}\bar{P}Lvec\bar{P}) = 0. }$$
(13.80)

Substituting (13.73) and (13.80) into (13.70) gives

$$\displaystyle{ a_{0} = 0. }$$
(13.81)

Also, from (13.69),

$$\displaystyle\begin{array}{rcl} b_{1}& =& vec{^\prime}JB_{1}vecJ \\ & =& vec{^\prime}JH(P \otimes \bar{ P} \otimes \bar{ P})HvecJ \\ & & +\,vec{^\prime}JH(P \otimes vec\bar{P}vec{^\prime}\bar{P} +\bar{ P} \otimes vecPvec{^\prime}\bar{P}+\bar{P} \otimes vec\bar{P}vec{^\prime}P)HvecJ \\ & & +\,vec{^\prime}J[P \otimes K_{k,k}(\bar{P} \otimes \bar{ P}) +\bar{ P} \otimes K_{k,k}(P \otimes \bar{ P})]vecJ \\ & & +\,vec{^\prime}J[\bar{P} \otimes K_{k,k}(\bar{P} \otimes P) + K_{k,k}(P \otimes \bar{ P}) \otimes \bar{ P}]vecJ \\ & & +\,vec{^\prime}J[K_{k,k}(\bar{P} \otimes \bar{ P}) \otimes \bar{ P} + K_{k,k}(\bar{P} \otimes \bar{ P}) \otimes P]vecJ \\ & & +\,vec{^\prime}JK_{k,{k}^{2}}\{[P \otimes K_{k,k}(\bar{P} \otimes \bar{ P})] + [\bar{P} \otimes K_{k,k}(P \otimes \bar{ P})] \\ & & \quad \quad \quad \quad \quad \quad \quad + [\bar{P} \otimes K_{k,k}(\bar{P} \otimes P)]\}K_{{k}^{2},k}vecJ. {}\end{array}$$
(13.82)

Using

$$\displaystyle\begin{array}{rcl} & & K_{p,q}vecA = vec(A{^\prime}), {}\\ & & A \otimes B = K_{p,r}(B \otimes A)K_{s,q}, {}\\ \end{array}$$

for A: p × q and B: r × s where K is the commutation matrix, the following equations are obtained:

$$\displaystyle{ K_{k,{k}^{2}}vecJ_{1} = 2(G{^\prime}{B}^{-1} \otimes G{^\prime}\mathbb{H}G \otimes G{^\prime}\mathbb{H})vec(D{^\prime}), }$$
(13.83)
$$\displaystyle{ K_{k,{k}^{2}}vecJ_{2} = [G{^\prime}\mathbb{H} \otimes (G{^\prime}{B}^{-1}G - I_{ k}) \otimes G{^\prime}\mathbb{H}]vec(D{^\prime}), }$$
(13.84)
$$\displaystyle{ K_{k,{k}^{2}}vecJ_{3} = -(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H}G \otimes G{^\prime}\mathbb{H})vec(D{^\prime}); }$$
(13.85)
$$\displaystyle{ K_{{k}^{2},k}vecJ_{1} = 2(G{^\prime}\mathbb{H} \otimes G{^\prime}{B}^{-1} \otimes G{^\prime}\mathbb{H}G)K_{{ p}^{2},k}vecD, }$$
(13.86)
$$\displaystyle{ K_{{k}^{2},k}vecJ_{2} = [G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H} \otimes (G{^\prime}{B}^{-1}G - I_{ k})]K_{{p}^{2},k}vecD, }$$
(13.87)
$$\displaystyle{ K_{{k}^{2},k}vecJ_{3} = -(G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H} \otimes G{^\prime}\mathbb{H}G)K_{{p}^{2},k}vecD. }$$
(13.88)

Then, substituting (13.83)–(13.88) into (13.82), and using

$$\displaystyle\begin{array}{rcl} & & vec(ABC) = (C{^\prime} \otimes A)vecB, {}\\ & & (A \otimes B){^\prime} = A{^\prime} \otimes B{^\prime}, {}\\ & & (A \otimes C)(B \otimes D) = (AB) \otimes (CD), {}\\ \end{array}$$

together with (13.71) and (13.72) yield

$$\displaystyle{ b_{1} = 0. }$$
(13.89)

Given (13.81) and (13.89), the proof of Theorem 2.4 in Phillips and Park (1988) establishes the conclusion of Theorem 2. □ 

Appendix 3

13.3.1 Data Description

The earnings data used are drawn from the Panel Study of Income Dynamics (PSID), available at http://psidonline.isr.umich.edu/

The sample consists of men who were heads of household from 1969 to 1974, between the ages of 21 (not inclusive) and 64 (not inclusive), and who reported positive earnings in each year. Individuals with average hourly earnings greater than $100 or reported annual hours greater than 4680 were excluded.

Variables V7492, V7490, V0313, V0794, V7460, V7476, V7491 listed on p.443 of Abowd and Card (1989) are not available now on the PSID website. The variables for sex listed on that page are not consistent with those on the PSID website. The following are the PSID variables used here:

  • ANNUAL EARNINGS: V1196, V1897, V2498, V3051, V3463, V3863;

  • ANNUAL HOURS: V1138, V1839, V2439, V3027, V3423, V3823;

  • SEX: ER32000;

  • AGE: ER30046.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, W., Prokhorov, A. (2014). Bartlett-Type Correction of Distance Metric Test. In: Sickles, R., Horrace, W. (eds) Festschrift in Honor of Peter Schmidt. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8008-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8008-3_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8007-6

  • Online ISBN: 978-1-4899-8008-3

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics