Skip to main content

Cathode Electrochemistry in Nonaqueous Lithium Air Batteries

  • Chapter
  • First Online:
The Lithium Air Battery

Abstract

This chapter summarizes the authors’ results and opinions of the electrochemistry occurring at a principally C cathode during Li–O2 discharge and charge. Ideally this reaction is only 2(Li+ + e ) + O2 ↔ Li2O2 that involves 2e /O2 consumed during discharge and 2e /O2 liberated during charge. Using quantitative DEMS and other spectroscopies, however, we find significant other chemistry/electrochemistry occurring as parasitic processes in Li–O2 discharge/charge. Much of this is related to electrolyte stability issues (and is electrolyte specific), while some is related to C stability as a cathode material. Much of the work presented in this chapter is an attempt to isolate and study the ideal Li–O2 electrochemistry in order to answer a fundamental question. Even if there are no parasitic chemical processes or practical cell-dependent limitations, is the Li–O2 electrochemistry sufficient to build a high-energy and high-power battery? In this regard, we report a wide variety of experiments and theory on the mechanism, kinetic overpotentials, and charge transport through Li2O2. We then combine our understanding of these fundamental aspects of the electrochemistry with what we know about limitations (parasitic chemistry and cell limiting properties) to understand observed galvanostatic discharges and charges. We describe origins of the current dependent loss of potential in discharge, the cell sudden death or capacity limitations, and the potential rise during charging. At present, the fundamental Li–O2 electrochemistry appears very promising for ultimate use in a high-energy battery. However, both electrolyte stability and the poor electrical conductivity through the Li2O2 remain as challenges to developing a practical lithium air battery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker R (2001) Future directions of membrane gas-separation technology. Membr Technol 2001(138):5–10

    Article  Google Scholar 

  2. Beattie SD, Manolescu DM, Blair SL (2009) High-capacity lithium-air cathodes. J Electrochem Soc 156(1):A44–A47

    Article  Google Scholar 

  3. Black R, Oh SH, Lee J-H et al (2012) Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J Am Chem Soc 134(6):2902–2905

    Article  Google Scholar 

  4. Bryantsev VS, Blanco M (2011) Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J Phys Chem Lett 2(5):379–383

    Article  Google Scholar 

  5. Bryantsev VS, Giordani V, Walker W et al (2011) Predicting solvent stability in aprotic electrolyte Li–air batteries: nucleophilic substitution by the superoxide anion radical (O2). J Phys Chem A 115(44):12399–12409

    Article  Google Scholar 

  6. Chen Y, Freunberger SA, Peng Z et al (2012) Li–O2 battery with a dimethylformamide electrolyte. J Am Chem Soc 134(18):7952–7957

    Article  Google Scholar 

  7. Christensen J, Albertus P, Sanchez-Carrera RS et al (2012) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30

    Article  Google Scholar 

  8. Dahl S (2012) Gas cleaning—perspectives from catalytic processes. In: Beyond lithium ion V: symposium on scalable energy storage, Berkeley, CA

    Google Scholar 

  9. Débart A, Bao J, Armstrong G et al (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 174(2):1177–1182

    Article  Google Scholar 

  10. Fan W, Cui Z, Guo X (2013) Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li–O2 cells. J Phys Chem C 117(6):2623–2627

    Article  Google Scholar 

  11. Freunberger SA, Chen Y, Drewett NE et al (2011) The lithium–oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50(37):8609–8613

    Article  Google Scholar 

  12. Freunberger SA, Chen Y, Peng Z et al (2011) Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040–8047

    Article  Google Scholar 

  13. Gallant BM, Mitchell RR, Kwabi DG et al (2012) Chemical and morphological changes of Li–O2 battery electrodes upon cycling. J Phys Chem C 116(39):20800–20805

    Article  Google Scholar 

  14. García-Lastra JM, Myrdal JSG, Christensen R et al (2013) DFT + U study of polaronic conduction in Li2O2 and Li2CO3: implications for Li-air batteries. J Phys Chem C 117:5568–5577

    Article  Google Scholar 

  15. Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Article  Google Scholar 

  16. Gowda SR, Brunet A, Wallraff GM et al (2012) Implications of CO2 contamination in rechargeable nonaqueous Li–O2 batteries. J Phys Chem Lett 4:276–279

    Google Scholar 

  17. Hartmann P, Bender C, Vračar M et al (2012) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228–232

    Article  Google Scholar 

  18. Hummelshoj JS, Blomqvist J, Datta S et al (2010) Communications: elementary oxygen electrode reactions in the aprotic Li-air battery. J Chem Phys 132(7):071101

    Article  Google Scholar 

  19. Hummelshoj JS, Luntz AC, Norskov JK (2013) Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. J Chem Phys 138(3):034703

    Article  Google Scholar 

  20. Jung H-G, Hassoun J, Park J-B et al (2012) An improved high-performance lithium-air battery. Nat Chem 4(7):579–585

    Article  Google Scholar 

  21. Kang J, Jung YS, Wei S-H et al (2012) Implications of the formation of small polarons in Li2O2 for Li-air batteries. Phys Rev B 85(3):035210

    Article  Google Scholar 

  22. Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J Electroanal Chem 660(2):254–260

    Article  Google Scholar 

  23. Laino T, Curioni A (2012) A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. Chemistry 18(12):3510–3520

    Article  Google Scholar 

  24. Laoire CO, Mukerjee S, Abraham KM et al (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113(46):20127–20134

    Article  Google Scholar 

  25. Laoire CO, Mukerjee S, Abraham KM et al (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J Phys Chem C 114(19):9178–9186

    Article  Google Scholar 

  26. Lim H, Yilmaz E, Byon HR (2012) Real-time XRD studies of Li–O2 electrochemical reaction in nonaqueous lithium–oxygen battery. J Phys Chem Lett 3(21):3210–3215

    Article  Google Scholar 

  27. Lu Y-C, Gasteiger HA, Crumlin E et al (2010) Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J Electrochem Soc 157(9):A1016–A1025

    Article  Google Scholar 

  28. Lu Y-C, Gasteiger HA, Parent MC et al (2010) The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem Solid State Lett 13(6):A69–A72

    Article  Google Scholar 

  29. Lu Y-C, Shao-Horn Y (2012) Probing the reaction kinetics of the charge reactions of nonaqueous Li–O2 batteries. J Phys Chem Lett 4(1):93–99

    Article  Google Scholar 

  30. Lu Y-C, Xu Z, Gasteiger HA et al (2010) Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc 132(35):12170–12171

    Article  Google Scholar 

  31. Luntz AC, Viswanathan V, Voss J et al (2013) Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries. J Phys Chem Lett 4:3494–3499

    Google Scholar 

  32. Man IC, Su H-Y, Calle-Vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165

    Article  Google Scholar 

  33. Matteucci S, Yampolskii Y, Freeman BD et al (2006) Transport of gases and vapors in glassy and rubbery polymers. In: Yampolskii Y, Pinnau I, Freeman BD (eds) Materials science of membranes. Wiley, New York, NY

    Google Scholar 

  34. McCloskey BD, Bethune DS, Shelby RM et al (2011) Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J Phys Chem Lett 2(10):1161–1166

    Article  Google Scholar 

  35. McCloskey BD, Bethune DS, Shelby RM et al (2012) Limitations in rechargeability of Li-O2 batteries and possible origins. J Phys Chem Lett 3:3043–3047

    Google Scholar 

  36. McCloskey BD, Scheffler R, Speidel A et al (2011) On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J Am Chem Soc 133(45):18038–18041

    Article  Google Scholar 

  37. McCloskey BD, Scheffler R, Speidel A et al (2012) On the mechanism of nonaqueous Li–O2 electrochemistry on C and its kinetic overpotentials: some implications for Li–air batteries. J Phys Chem C 116(45):23897–23905

    Article  Google Scholar 

  38. McCloskey BD, Speidel A, Scheffler R et al (2012) Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett 3(8):997–1001

    Article  Google Scholar 

  39. Meini S, Piana M, Beyer H et al (2012) Effect of carbon surface area on first discharge capacity of Li-O2 cathodes and cycle-life behavior in ether-based electrolytes. J Electrochem Soc 159(12):A2135–A2142

    Article  Google Scholar 

  40. Meini S, Piana M, Tsiouvaras N et al (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries. Electrochem Solid State Lett 15(4):A45–A48

    Article  Google Scholar 

  41. Mizuno F, Takechi K, Higashi S et al (2013) Cathode reaction mechanism of non-aqueous Li–O2 batteries with highly oxygen radical stable electrolyte solvent. J Power Sources 228:47–56

    Article  Google Scholar 

  42. Norskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  43. Ong SP, Mo Y, Ceder G (2012) Low hole polaron migration barrier in lithium peroxide. Phys Rev B 85(8):081105

    Article  Google Scholar 

  44. Ottakam Thotiyl MM, Freunberger SA, Peng Z et al (2013) The carbon electrode in non-aqueous Li-O2 cells. J Am Chem Soc 135:494–500

    Article  Google Scholar 

  45. Peng Z, Freunberger SA, Chen Y et al (2012) A reversible and higher-rate Li-O2 battery. Science 337(6094):563–566

    Article  Google Scholar 

  46. Peng Z, Freunberger SA, Hardwick LJ et al (2011) Oxygen reactions in a non-aqueous Li(+) electrolyte. Angew Chem Int Ed 50(28):6351–6355

    Article  Google Scholar 

  47. Radin MD, Rodriguez JF, Tian F et al (2012) Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J Am Chem Soc 134(2):1093–1103

    Article  Google Scholar 

  48. Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190–A1195

    Article  Google Scholar 

  49. Ryan KR, Trahey L, Ingram BJ et al (2012) Limited stability of ether-based solvents in lithium–oxygen batteries. J Phys Chem C 116(37):19724–19728

    Article  Google Scholar 

  50. Takechi K, Higashi S, Mizuno F et al (2012) Stability of solvents against superoxide radical species for the electrolyte of lithium-air battery. ECS Electrochem Lett 1(1):A27–A29

    Article  Google Scholar 

  51. Takechi K, Shiga T, Asaoka T (2011) A Li-O2/CO2 battery. Chem Commun (Cambridge, UK) 47(12):3463–3465

    Article  Google Scholar 

  52. Veith GM, Nanda J, Delmau LH et al (2012) Influence of lithium salts on the discharge chemistry of Li-air cells. J Phys Chem Lett 3(10):1242–1247

    Article  Google Scholar 

  53. Viswanathan V, Hansen HA, Rossmeisl J et al (2012) Unifying the 2e– and 4e– reduction of oxygen on metal surfaces. J Phys Chem Lett 3(20):2948–2951

    Article  Google Scholar 

  54. Viswanathan V, Nørskov JK, Speidel A et al (2013) Li–O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J Phys Chem Lett 4(4):556–560

    Article  Google Scholar 

  55. Viswanathan V, Thygesen KS, Hummelshoj JS et al (2011) Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J Chem Phys 135(21):214704

    Article  Google Scholar 

  56. Varley JB, Viswanathan V, Nørskov JK, Luntz AC (2014) Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li–O2 batteries. Energy Environ Sci 7:720–727

    Google Scholar 

  57. Wu X, Viswanathan VV, Deyu W et al (2011) Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes. J Power Sources 196(8):3894–3899

    Article  Google Scholar 

  58. Xie B, Lee HS, Li H et al (2008) New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem Commun 10(8):1195–1197

    Article  Google Scholar 

  59. Xu W, Hu J, Engelhard MH et al (2012) The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries. J Power Sources 215:240–247

    Article  Google Scholar 

  60. Xu W, Xu K, Viswanathan VV et al (2011) Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes. J Power Sources 196(22):9631–9639

    Article  Google Scholar 

  61. Xu Y, Shelton WA (2010) O2 reduction by lithium on Au(111) and Pt(111). J Chem Phys 133(2):024703

    Article  Google Scholar 

  62. Zhang D, Li R, Huang T et al (2010) Novel composite polymer electrolyte for lithium air batteries. J Power Sources 195(4):1202–1206

    Article  Google Scholar 

  63. Zhang SS, Foster D, Read J (2010) Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J Power Sources 195(4):1235–1240

    Article  Google Scholar 

  64. Zhang ZC, Lu J, Assary RS et al (2011) Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J Phys Chem C 115(51):25535–25542

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their many collaborators, both at IBM and SLAC/Stanford, for their contributions to the work presented here. These include at IBM, Girish Gopalakrishnan, Angela Speidel (VW), Rouven Scheffler (VW), and Greg Wallraff and at SLAC/Stanford, Jens Hummelshøj and Jens Nørskov. In addition, we especially thank Winfried Wilcke for initiating the program in lithium air at IBM and for stimulating interest in this field throughout the world. V. V. also acknowledges support from the US Department of Energy, Basic Energy Sciences, through the SUNCAT Center for Interface Science and Catalysis and for a UTRC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Luntz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luntz, A.C., McCloskey, B.D., Gowda, S., Horn, H., Viswanathan, V. (2014). Cathode Electrochemistry in Nonaqueous Lithium Air Batteries. In: Imanishi, N., Luntz, A., Bruce, P. (eds) The Lithium Air Battery. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8062-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8062-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8061-8

  • Online ISBN: 978-1-4899-8062-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics