Skip to main content

Role of MicroRNAs in Stem Cell Regulation and Tumorigenesis in Drosophila

  • Chapter
  • First Online:
MicroRNA in Development and in the Progression of Cancer

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that modulate the expression of target mRNA. They are involved in many biological processes such as developmental timing, differentiation, cell death, immune response, stem cell behavior, and cancer. Growing evidence suggests that miRNAs play vital roles in regulating several aspects of stem cell biology in Drosophila including cell division, self-renewal, and differentiation. In recent years, miRNAs have emerged as collaborating factors that promote the activity of oncogenes in tumor development. Here, we present a brief overview on the role of miRNAs in the regulation of stem cell behavior and tumorigenesis in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plasterk RH. Micro RNAs in animal development. Cell. 2006;124:877–81.

    CAS  PubMed  Google Scholar 

  2. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4.

    CAS  PubMed  Google Scholar 

  3. Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet. 2008;9(11):831–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol. 2009;10(2):116–25.

    CAS  PubMed  Google Scholar 

  5. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009;25:355–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.

    CAS  PubMed  Google Scholar 

  9. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.

    CAS  PubMed  Google Scholar 

  10. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 2004;14(23):2162–7.

    CAS  PubMed  Google Scholar 

  11. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–40.

    CAS  PubMed  Google Scholar 

  12. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901.

    CAS  PubMed  Google Scholar 

  13. Martin R, Smibert P, Yalcin A, Tyler DM, Schäfer U, Tuschl T, Lai EC. Drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways. Mol Cell Biol. 2009;29(3):861–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10(2):185–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–8.

    PubMed  Google Scholar 

  17. Carmell MA, Hannon GJ. RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol. 2004;11(3):214–8.

    CAS  PubMed  Google Scholar 

  18. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118(1):57–68.

    CAS  PubMed  Google Scholar 

  19. Saito K, Ishizuka A, Siomi H, Siomi MC. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 2005;3(7):e235.

    PubMed Central  PubMed  Google Scholar 

  20. Okamura K, Ishizuka A, Siomi H, Siomi MC. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 2004;18(14):1655–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    CAS  PubMed  Google Scholar 

  23. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–62.

    CAS  PubMed  Google Scholar 

  24. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.

    CAS  PubMed  Google Scholar 

  25. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86–9.

    CAS  PubMed  Google Scholar 

  26. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.

    CAS  PubMed  Google Scholar 

  27. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005;310(5755):1817–21.

    CAS  PubMed  Google Scholar 

  28. Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet. 2006;38(12):1452–6.

    CAS  PubMed  Google Scholar 

  29. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12(12):846–60.

    CAS  PubMed  Google Scholar 

  31. Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A, Hung JH, Okamura K, Dai Q, Bortolamiol-Becet D, Martin R, Zhao Y, Zamore PD, Hannon GJ, Marra MA, Weng Z, Perrimon N, Lai EC. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res. 2011;21(2):203–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Xia J, Zhang W. A meta-analysis revealed insights into the sources, conservation and impact of microRNA 5†²-isoforms in four model species. Nucleic Acids Res. 2013;1–15. doi:10.1093/nar/gkt967.

    Google Scholar 

  33. Mohammed J, Flynt AS, Siepel A, Lai EC. The impact of age, biogenesis, and genomic clustering on Drosophila microRNA evolution. RNA. 2013;19(9):1295–308.

    CAS  PubMed  Google Scholar 

  34. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10(2):111–22.

    PubMed  Google Scholar 

  35. Fullaondo A, Lee SY. Identification of putative miRNA involved in Drosophila melanogaster immune response. Dev Comp Immunol. 2012;36(2):267–73.

    CAS  PubMed  Google Scholar 

  36. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH. MicroRNA expression in zebrafish embryonic development. Science. 2005;309(5732):310–1.

    CAS  PubMed  Google Scholar 

  37. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ. Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A. 2005;102(34):12135–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene. 2006;25(46):6176–87.

    CAS  PubMed  Google Scholar 

  39. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD. MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008;9(8):839–45.

    CAS  PubMed  Google Scholar 

  40. Dumortier O, Hinault C, Van Obberghen E. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013;18(3):312–24.

    CAS  PubMed  Google Scholar 

  41. Mathieu J, Ruohola-Baker H. Regulation of stem cell populations by microRNAs. Adv Exp Med Biol. 2013;786:329–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Di Leva G, Croce CM. miRNA profiling of cancer. Curr Opin Genet Dev. 2013;23(1):3–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Sun K, Lai EC. Adult-specific functions of animal microRNAs. Nat Rev Genet. 2013;4(8):535–48.

    Google Scholar 

  44. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33.

    CAS  PubMed  Google Scholar 

  45. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43.

    PubMed  Google Scholar 

  46. Lin H. Cell biology of stem cells: an enigma of asymmetry and self-renewal. J Cell Biol. 2008;180(2):257–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Singh SR. Stem cell niche in tissue homeostasis, aging and cancer. Curr Med Chem. 2012;19(35):5965–74.

    CAS  PubMed  Google Scholar 

  48. Förstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 2005;3(7):e236.

    PubMed Central  PubMed  Google Scholar 

  49. Shcherbata HR, Hatfield S, Ward EJ, Reynolds S, Fischer KA, Ruohola-Baker H. The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle. 2006;5(2):172–5.

    CAS  PubMed  Google Scholar 

  50. Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res. 2008;331(1):57–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Stadler BM, Ruohola-Baker H. Small RNAs: keeping stem cells in line. Cell. 2008;132(4):563–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Li Q, Gregory RI. MicroRNA regulation of stem cell fate. Cell Stem Cell. 2008;2(3):195–6.

    CAS  PubMed  Google Scholar 

  53. Park JK, Liu X, Strauss TJ, McKearin DM, Liu Q. The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells. Curr Biol. 2007;17(6):533–8.

    CAS  PubMed  Google Scholar 

  54. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet. 2008;40(12):1478–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Murashov AK. A brief introduction to RNAi and microRNAs in stem cells. Methods Mol Biol. 2010;650:15–25.

    CAS  PubMed  Google Scholar 

  56. Huang XA, Lin H. The microRNA regulation of stem cells. Wiley Interdiscip Rev Dev Biol. 2012;1(1):83–95.

    CAS  PubMed  Google Scholar 

  57. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H. Stem cell division is regulated by the microRNA pathway. Nature. 2005;435(7044):974–8.

    CAS  PubMed  Google Scholar 

  58. Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 2005, 19(14):1674–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Jin Z, Xie T. Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol. 2007;17(6):539–44.

    CAS  PubMed  Google Scholar 

  60. Shcherbata HR, Ward EJ, Fischer KA, Yu JY, Reynolds SH, Chen CH, Xu P, Hay BA, Ruohola-Baker H. Stage-specific differences in the requirements for germline stem cell maintenance in the Drosophila ovary. Cell Stem Cell. 2007;1(6):698–709.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Yang L, Chen D, Duan R, Xia L, Wang J, Qurashi A, Jin P, Chen D. Argonaute 1 regulates the fate of germline stem cells in Drosophila. Development. 2007;134(23):4265–72.

    CAS  PubMed  Google Scholar 

  62. Yang L, Duan R, Chen D, Wang J, Chen D, Jin P. Fragile X mental retardation protein modulates the fate of germline stem cells in Drosophila. Hum Mol Genet. 2007;16(15):1814–20.

    CAS  PubMed  Google Scholar 

  63. Neumüller RA, Betschinger J, Fischer A, Bushati N, Poernbacher I, Mechtler K, Cohen SM, Knoblich JA. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature. 2008;454(7201):241–5.

    PubMed Central  PubMed  Google Scholar 

  64. Yang Y, Xu S, Xia L, Wang J, Wen S, Jin P, Chen D. The bantam microRNA is associated with Drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet. 2009;5(4):e1000444.

    PubMed Central  PubMed  Google Scholar 

  65. Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR, Fischer KA, Ward EJ, Long D, Ding Y, Ruohola-Baker H. Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells. Development. 2009;136(9):1497–507.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Azzam G, Smibert P, Lai EC, Liu JL. Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division. Dev Biol. 2012;365(2):384–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Liu N, Han H, Lasko P. Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes Dev. 2009;23(23):2742–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Pek JW, Lim AK, Kai T. Drosophila maelstrom ensures proper germline stem cell lineage differentiation by repressing microRNA-7. Dev Cell. 2009;17(3):417–24.

    CAS  PubMed  Google Scholar 

  69. Iovino N, Pane A, Gaul U. miR-184 has multiple roles in Drosophila female germline development. Dev Cell. 2009;17(1):123–33.

    CAS  PubMed  Google Scholar 

  70. Wang H, Mu Y, Chen D. Effective gene silencing in Drosophila ovarian germline by artificial microRNAs. Cell Res. 2011;21(4):700–3.

    PubMed Central  PubMed  Google Scholar 

  71. Li Y, Maines JZ, Tastan OY, McKearin DM, Buszczak M. Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling. Development. 2012;139(9):1547–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Toledano H, D’Alterio C, Czech B, Levine E, Jones DL. The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature. 2012;485(7400):605–10.

    CAS  PubMed  Google Scholar 

  73. Eun SH, Stoiber PM, Wright HJ, McMurdie KE, Choi CH, Gan Q, Lim C, Chen X. MicroRNAs downregulate Bag of marbles to ensure proper terminal differentiation in the Drosophila male germline. Development. 2013;140(1):23–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Pancratov R, Peng F, Smibert P, Yang S Jr, Olson ER, Guha-Gilford C, Kapoor AJ, Liang FX, Lai EC, Flaherty MS, DasgGupta R. The miR-310/13 cluster antagonizes β-catenin function in the regulation of germ and somatic cell differentiation in the Drosophila testis. Development. 2013;140(14):2904–16.

    CAS  PubMed  Google Scholar 

  75. Joly W, Chartier A, Rojas-Rios P, Busseau I, Simonelig M. The CCR4 deadenylase acts with nanos and pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal. Stem Cell Reports. 2013;1(5):411–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Song X, Zhu CH, Doan C, Xie T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science. 2002;296(5574):1855–7.

    CAS  PubMed  Google Scholar 

  77. Singh SR, Chen X, Hou SX. JAK/STAT signaling regulates tissue outgrowth and male germline stem cell fate in Drosophila. Cell Res. 2005;15(1):1–5.

    CAS  PubMed  Google Scholar 

  78. Singh SR, Zheng Z, Wang H, Oh SW, Chen X, Hou SX. Competitiveness for the niche and mutual dependence of the germline and somatic stem cells in the Drosophila testis are regulated by the JAK/STAT signaling. J Cell Physiol. 2010;223(2):500–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Wang H, Singh SR, Zheng Z, Oh SW, Chen X, Edwards K, Hou SX. Rap-GEF signaling controls stem cell anchoring to their niche through regulating DE-cadherin-mediated cell adhesion in the Drosophila testis. Dev Cell. 2006;10(1):117–26.

    CAS  PubMed  Google Scholar 

  80. Singh SR, Zhen W, Zheng Z, Wang H, Oh SW, Liu W, Zbar B, Schmidt LS, Hou SX. The Drosophila homolog of the human tumor suppressor gene BHD interacts with the JAK-STAT and Dpp signaling pathways in regulating male germline stem cell maintenance. Oncogene. 2006;25(44):5933–41.

    CAS  PubMed  Google Scholar 

  81. Singh SR, Liu Y, Kango-Singh M, Nevo E. Genetic, immunofluorescence labeling, and in situ hybridization techniques in identification of stem cells in male and female germline niches. Methods Mol Biol. 2013;1035:9–23.

    PubMed  Google Scholar 

  82. Fuller MT, Spradling AC. Male and female Drosophila germline stem cells: two versions of immortality. Science. 2007 Apr 20;316(5823):402–4.

    CAS  PubMed  Google Scholar 

  83. Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science. 2007;315(5811):518–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Matunis EL, Stine RR, de Cuevas M. Recent advances in Drosophila male germline stem cell biology. Spermatogenesis. 2012;2(3):137–44.

    PubMed Central  PubMed  Google Scholar 

  85. Gönczy P, DiNardo S. The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development. 1996;122(8):2437–47.

    PubMed  Google Scholar 

  86. Voog J, D’Alterio C, Jones DL. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature. 2008;454(7208):1132–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Weng R, Cohen SM. Drosophila miR-124 regulates neuroblast proliferation through its target anachronism. Development. 2012;139(8):1427–34.

    CAS  PubMed  Google Scholar 

  88. Sun K, Westholm JO, Tsurudome K, Hagen JW, Lu Y, Kohwi M, Betel D, Gao FB, Haghighi AP, Doe CQ, Lai EC. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants. PLoS Genet. 2012;8(2):e1002515.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Kucherenko MM, Barth J, Fiala A, Shcherbata HR. Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain. EMBO J. 2012;31(24):4511–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Morante J, Vallejo DM, Desplan C, Dominguez M. Conserved miR-8/miR-200 defines a glial niche that controls neuroepithelial expansion and neuroblast transition. Dev Cell. 2013;27(2):174–87.

    CAS  PubMed  Google Scholar 

  91. Huang H, Li J, Hu L, Ge L, Ji H, Zhao Y, Zhang L. Bantam is essential for Drosophila intestinal stem cell proliferation in response to Hippo signaling. Dev Biol. 2014;385(2):211–9. doi:10.1016/j.ydbio.2013.11.008.

    CAS  PubMed  Google Scholar 

  92. Tokusumi T, Tokusumi Y, Hopkins DW, Shoue DA, Corona L, Schulz RA. Germ line differentiation factor Bag of Marbles is a regulator of hematopoietic progenitor maintenance during Drosophila hematopoiesis. Development. 2011;138(18):3879–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.

    CAS  PubMed  Google Scholar 

  94. Wang D, Qiu C, Zhang H, Wang J, Cui Q, Yin Y. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One. 2010;5(9):e13067.

    PubMed Central  PubMed  Google Scholar 

  95. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    CAS  PubMed  Google Scholar 

  96. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28(3–4):369–78.

    CAS  PubMed  Google Scholar 

  98. Costa PM, Pedroso de Lima MC. MicroRNAs as molecular targets for cancer therapy: on the modulation of microRNA expression. Pharmaceuticals. 2013;6(10):1195–220.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Cheng AM, Byrom MW, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33:1290–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kumar MS, Lu J, Mercer KL, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.

    CAS  PubMed  Google Scholar 

  101. Rubin GM, Hong L, Brokstein P, Evans-Holm M, Frise E, Stapleton M, Harvey DA. A Drosophila complementary DNA resource. Science. 2000;287(5461):2222–4.

    CAS  PubMed  Google Scholar 

  102. Hombría JC, Serras F. Why should we care about fly tumors? The case of JAK-STAT and EGFR cooperation in oncogenesis. JAKSTAT. 2013;2(2):e23203.

    PubMed Central  PubMed  Google Scholar 

  103. Miles WO, Dyson NJ, Walker JA. Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech. 2011;4(6):753–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Stefanatos RK, Vidal M. Tumor invasion and metastasis in Drosophila: a bold past, a bright future. J Genet Genomics. 2011;38(10):431–8.

    CAS  PubMed  Google Scholar 

  105. Polesello C, Roch F, Gobert V, Haenlin M, Waltzer L. Modeling cancers in Drosophila. Prog Mol Biol Transl Sci. 2011;100:51–82.

    CAS  PubMed  Google Scholar 

  106. Rudrapatna VA, Cagan RL, Das TK. Drosophila cancer models. Dev Dyn. 2012;241(1):107–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113(1):25–36.

    CAS  PubMed  Google Scholar 

  108. Nolo R, Morrison CM, Tao C, Zhang X, Halder G. The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol. 2006;16(19):1895–904.

    CAS  PubMed  Google Scholar 

  109. Nairz K, Rottig C, Rintelen F, Zdobnov E, Moser M, Hafen E. Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. Dev Biol. 2006;291(2):314–24.

    CAS  PubMed  Google Scholar 

  110. Vallejo DM, Caparros E, Dominguez M. Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J. 2011;30(4):756–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Oh H, Irvine KD. Cooperative regulation of growth by Yorkie and Mad through bantam. Dev Cell. 2011;20(1):109–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Herranz H, Hong X, Hung NT, Voorhoeve PM, Cohen SM. Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model. Genes Dev 2012, 26:1602–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Da Ros VG, Gutierrez-Perez I, Ferres-Marco D, Dominguez M. Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis. PLoS Biol. 2013;11(5):e1001554.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Zhang Y, Lai ZC. Mob as tumor suppressor is regulated by bantam microRNA through a feedback loop for tissue growth control. Biochem Biophys Res Commun. 2013;439(4):438–42.

    CAS  PubMed  Google Scholar 

  115. Thompson BJ, Cohen SM. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell. 2006;126(4):767–74.

    CAS  PubMed  Google Scholar 

  116. Peng HW, Slattery M, Mann RS. Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev. 2009;23(19):2307–19.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program, National Cancer Institute of the National Institutes of Health. Lyric Forney is supported by Werner H. Kirsten Student Intern Program (WHK SIP) of National Cancer Institute at Frederick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shree Ram Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rager, S., Chan, B., Forney, L., Singh, S. (2014). Role of MicroRNAs in Stem Cell Regulation and Tumorigenesis in Drosophila . In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_4

Download citation

Publish with us

Policies and ethics