Skip to main content

Molecular Modeling of Electrolytes

  • Chapter
  • First Online:
Electrolytes for Lithium and Lithium-Ion Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 58))

Abstract

Recent advances in molecular modeling provide significant insight into electrolyte electrochemical and transport properties. The first part of the chapter discusses applications of quantum chemistry methods to determine electrolyte oxidative stability and oxidation-induced decomposition reactions. A link between the oxidation stability of model electrolyte clusters and the kinetics of oxidation reactions is established and compared with the results of linear sweep voltammetry measurements. The second part of the chapter focuses on applying molecular dynamics (MD) simulations and density functional theory to predict the structural and transport properties of liquid electrolytes and solid electrolyte interphase (SEI) model compounds; the free energy profiles for lithium desolvation from electrolytes; and the behavior of electrolytes at charged electrodes and the electrolyte–SEI interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assowe, O.; Politano, O.; Vignal, V.; Arnoux, P.; Diawara, B.; Verners, O.; van Duin, A. C. T., Reactive Molecular Dynamics of the Initial Oxidation Stages of Ni(111) in Pure Water: Effect of an Applied Electric Field. J. Phys. Chem. A 2012, 116, 11796-11805.

    Google Scholar 

  2. Han, S. S.; van Duin, A. C. T.; Goddard, W. A.; Lee, H. M., Optimization and Application of Lithium Parameters for the Reactive Force Field, ReaxFF. J. Phys. Chem. A, 2005, 109, 4575-4582.

    Google Scholar 

  3. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K., Gn Theory. Wiley Interdisciplinary Reviews: Comput. Mol. Sci. 2011, 1, 810-825.

    Google Scholar 

  4. Trasatti, S., The Absolute Electrode Potential - an Explanatory Note (Recommendations 1986). Pure Appl Chem 1986, 58, 955-966.

    Google Scholar 

  5. Gomer, R.; Tryson, G., An Experimental Determination of Absolute Half-Cell Emf’s and Single Ion Free Energies of Solvation. J. Chem. Phys. 1977, 66, 4413-4424.

    Google Scholar 

  6. Isse, A. A.; Gennaro, A., Absolute Potential of the Standard Hydrogen Electrode and the Problem of Interconversion of Potentials in Different Solvents. J. Phys. Chem. B 2010, 114, 7894-7899.

    Google Scholar 

  7. Zhang, X. R.; Pugh, J. K.; Ross, P. N., Computation of Thermodynamic Oxidation Potentials of Organic Solvents Using Density Functional Theory. J. Electrochem. Soc. 2001, 148, E183-E188.

    Google Scholar 

  8. Shao, N.; Sun, X. G.; Dai, S.; Jianel, D. E., Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries. J. Phys. Chem. B 2011, 115, 12120-12125.

    Google Scholar 

  9. Dean, J. A., Lange’s Handbook of Chemistry (15th Edition). McGraw-Hill: New York, NY, 1999.

    Google Scholar 

  10. http://webbook.nist.gov/chemistry/, NIST Webbook.

  11. Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. H.; Earhart, A. D.; Coe, J. V.; Tuttle, T. R., The Proton’s Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data. J. Phys. Chem. A 1998, 102, 7787-7794.

    Google Scholar 

  12. Westphal, E.; Pliego, J. R., Absolute Solvation Free Energy of Li+ and Na+ Ions in Dimethyl Sulfoxide Solution: A Theoretical Ab Initio and Cluster-Continuum Model Study. J. Chem. Phys. 2005, 123(7), 074508.

    Google Scholar 

  13. Eilmes, A.; Kubisiak, P., Relative Complexation Energies for Li+ Ion in Solution: Molecular Level Solvation Versus Polarizable Continuum Model Study. J. Phys. Chem. A 2009, 114, 973-979.

    Google Scholar 

  14. Bryantsev, V., Calculation of Solvation Free Energies of Li+ and O2 - Ions and Neutral Lithium–Oxygen Compounds in Acetonitrile Using Mixed Cluster/Continuum Models. Theor. Chem. Acc: Theory, Computation, and Modeling (Theoretica Chimica Acta) 2012, 131, 1-11.

    Google Scholar 

  15. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378-6396.

    Google Scholar 

  16. Borodin, O.; Behl, W.; Jow, T. R., Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes. J. Phys. Chem. C 2013, 117, 8661-8682.

    Google Scholar 

  17. Ue, M.; Murakami, A.; Nakamura, S., Anodic Stability of Several Anions Examined by Ab Initio Molecular Orbital and Density Functional Theories. J. Electrochem. Soc. 2002, 149, A1572-A1577.

    Google Scholar 

  18. Fu, Y.; Liu, L.; Yu, H. Z.; Wang, Y. M.; Guo, Q. X., Quantum-Chemical Predictions of Absolute Standard Redox Potentials of Diverse Organic Molecules and Free Radicals in Acetonitrile. J. Am. Chem. Soc. 2005, 127, 7227-7234.

    Google Scholar 

  19. Johansson, P., Intrinsic Anion Oxidation Potentials J. Phys. Chem. A 2007, 111, 1378-1379.

    Google Scholar 

  20. Xing, L. D.; Li, W. S.; Wang, C. Y.; Gu, F. L.; Xu, M. Q.; Tan, C. L.; Yi, J., Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use. J. Phys. Chem. B 2009, 113, 16596-16602.

    Google Scholar 

  21. Assary, R. S.; Curtiss, L. A.; Redfern, P. C.; Zhang, Z. C.; Amine, K., Computational Studies of Polysiloxanes: Oxidation Potentials and Decomposition Reactions. J. Phys. Chem. C 2011, 115, 12216-12223.

    Google Scholar 

  22. Ong, S. P.; Ceder, G., Investigation of the Effect of Functional Group Substitutions on the Gas-Phase Electron Affinities and Ionization Energies of Room-Temperature Ionic Liquids Ions Using Density Functional Theory. Electrochim. Acta 2010, 55, 3804-3811.

    Google Scholar 

  23. Shao, N.; Sun, X.-G.; Dai, S.; Jiang, D.-E., Oxidation Potentials of Functionalized Sulfone Solvents for High-Voltage Li-Ion Batteries: A Computational Study. J. Phys. Chem. B 2012, 116, 3235-3238.

    Google Scholar 

  24. Yoshimura, M.; Honda, K.; Kondo, T.; Uchikado, R.; Einaga, Y.; Rao, T. N.; Tryk, D. A.; Fujishima, A., Factors Controlling the Electrochemical Potential Window for Diamond Electrodes in Non-Aqueous Electrolytes. Diam. Relat. Mater. 2002, 11, 67-74.

    Google Scholar 

  25. Wang, R. L.; Moshurchak, L. M.; Lamanna, W. M.; Bulinski, M.; Dahn, J. R., A Combined Computational/Experimental Study on Tert butyl- and Methoxy-Substituted Benzene Derivatives as Redox Shuttles for Lithium-Ion Cells. J. Electrochem. Soc. 2008, 155, A66-A73.

    Google Scholar 

  26. Han, Y. K.; Jung, J.; Yu, S.; Lee, H., Understanding the Characteristics of High-Voltage Additives in Li-Ion Batteries: Solvent Effects. J. Power Sources 2009, 187, 581-585.

    Google Scholar 

  27. Li, T.; Xing, L.; Li, W.; Peng, B.; Xu, M.; Gu, F.; Hu, S., Theoretic Calculation for Understanding the Oxidation Process of 1,4-Dimethoxybenzene-Based Compounds as Redox Shuttles for Overcharge Protection of Lithium Ion Batteries. J. Phys. Chem. A 2011, 115, 4988-4994.

    Google Scholar 

  28. Johansson, P., Intrinsic Anion Oxidation Potentials. J. Phys. CHem. A 2006, 110, 12077-12080.

    Google Scholar 

  29. Johansson, P.; Jacobsson, P., Rational Design of Electrolyte Components by Ab Initio Calculations. J. Power Sources 2006, 153, 336-344.

    Google Scholar 

  30. Armand, M.; Johansson, P., Novel Weakly Coordinating Heterocyclic Anions for Use in Lithium Batteries. J. Power Sources 2008, 178, 821-825.

    Google Scholar 

  31. Scheers, J.; Johansson, P.; Jacobsson, P., Anions for Lithium Battery Electrolytes: A Spectroscopic and Theoretical Study of the B(CN)4 - Anion of the Ionic Liquid C2mim[B(CN)4]. J. Electrochem. Soc. 2008, 155, A628-A634.

    Google Scholar 

  32. Ong, S. P.; Andreussi, O.; Wu, Y. B.; Marzari, N.; Ceder, G., Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations. Chem. Mater. 2011, 23, 2979-2986.

    Google Scholar 

  33. Tian, Y.-H.; Goff, G. S.; Runde, W. H.; Batista, E. R., Exploring Electrochemical Windows of Room-Temperature Ionic Liquids: A Computational Study. J. Phys. Chem. B 2012, 116, 11943–11952.

    Google Scholar 

  34. Borodin, O.; Jow, T. R., Quantum Chemistry Studies of the Oxidative Stability of Carbonate, Sulfone and Sulfonate-Based Electrolytes Doped with BF4 -, PF6 - Anions. ECS Transactions 2011, 33, 77-84.

    Google Scholar 

  35. Xing, L.; Borodin, O.; Smith, G. D.; Li, W., Density Functional Theory Study of the Role of Anions on the Oxidative Decomposition Reaction of Propylene Carbonate. J. Phys. Chem. A 2011, 115, 13896-13905.

    Google Scholar 

  36. Xing, L.; Borodin, O., Oxidation Induced Decomposition of Ethylene Carbonate from DFT Calculations - Importance of Explicitly Treating Surrounding Solvent. Phys. Chem. Chem. Phys. 2012, 14, 12838-12843.

    Google Scholar 

  37. Borodin, O.; Jow, T. R., Quantum Chemistry Study of the Oxidation-Induced Decomposition of Tetramethylene Sulfone (TMS) Dimer and TMS/BF4. ECS Transactions 2013, 50, 391-398.

    Google Scholar 

  38. Wang, R. L.; Buhrmester, C.; Dahn, J. R., Calculations of Oxidation Potentials of Redox Shuttle Additives for Li-Ion Cells. J. Electrochem. Soc. 2006, 153, A445-A449.

    Google Scholar 

  39. Kang, S.; Park, M. H.; Lee, H.; Han, Y. K., A Joint Experimental and Theoretical Determination of the Structures of Oxidized and Reduced Molecules. Electrochem. Commun. 2012, 23, 83-86.

    Google Scholar 

  40. Shkrob, I. A.; Zhu, Y.; Marin, T. W.; Abraham, D. P., Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium Ion Batteries. 1. Spectroscopic Observations of Radical Intermediates Generated in One-Electron Reduction of Carbonates. J. Phys. Chem. C 2013, 117, 19255–19269

    Google Scholar 

  41. Egashira, M.; Takahashi, H.; Okada, S.; Yamaki, J., Measurement of the Electrochemical Oxidation of Organic Electrolytes Used in Lithium Batteries by Microelectrode. J. Power Sources 2001, 92, 267-271.

    Google Scholar 

  42. Ue, M.; Takeda, M.; Takehara, M.; Mori, S., Electrochemical Properties of Quaternary Ammonium Salts for Electrochemical Capacitors. J. Electrochem. Soc. 1997, 144, 2684-2688.

    Google Scholar 

  43. Xing, L. D.; Wang, C. Y.; Li, W. S.; Xu, M. Q.; Meng, X. L.; Zhao, S. F., Theoretical Insight into Oxidative Decomposition of Propylene Carbonate in the Lithium Ion Battery. J. Phys. Chem. B 2009, 113, 5181-5187.

    Google Scholar 

  44. Ufheil, J.; Wursig, A.; Schneider, O. D.; Novak, P., Acetone as Oxidative Decomposition Product in Propylene Carbonate Containing Battery Electrolyte. Electrochem. Commun. 2005, 7, 1380-1384.

    Google Scholar 

  45. Hammami, A.; Raymond, N.; Armand, M., Lithium-Ion Batteries: Runaway Risk of Forming Toxic Compounds. Nature 2003, 424, 635-636.

    Google Scholar 

  46. Yang, L.; Ravdel, B.; Lucht, B. L., Electrolyte Reactions with the Surface of High Voltage Lini0.5mn1.5o4 Cathodes for Lithium-Ion Batteries. Electrochem. Solid State Lett., 2010, 13, A95-A97.

    Google Scholar 

  47. Leung, K., First-Principles Modeling of the Initial Stages of Organic Solvent Decomposition on LixMN2O4(100) Surfaces. J. Phys. Chem. C 2012, 116, 9852-9861.

    Google Scholar 

  48. Leung, K., Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries. J. Phys. Chem. C 2013, 117, 1539-1547.

    Google Scholar 

  49. Karim, A.; Fosse, S.; Persson, K. A., Surface Structure and Equilibrium Particle Shape of the Limn2o4 Spinel from First-Principles Calculations. Phys. Rev. B 2013, 87, 075322.

    Google Scholar 

  50. Jorn, R.; Kumar, R.; Abraham, D. P.; Voth, G. A., Atomistic Modeling of the Electrode–Electrolyte Interface in Li-Ion Energy Storage Systems: Electrolyte Structuring. J. Phys. Chem. C 2013, 117, 3747-3761.

    Google Scholar 

  51. Ganesh, P.; Jiang, D.-e.; Kent, P. R. C., Accurate Static and Dynamic Properties of Liquid Electrolytes for Li-Ion Batteries from Ab Initio Molecular Dynamics. J. Phys. Chem. B 2011, 115, 3085-3090.

    Google Scholar 

  52. Borodin, O.; Smith, G. D., Quantum Chemistry and Molecular Dynamics Simulation Study of Dimethyl Carbonate: Ethylene Carbonate Electrolytes Doped with LiPF6. J. Phys. Chem. B 2009, 113, 1763-1776.

    Google Scholar 

  53. Borodin, O.; Smith, G. D., LiTFSI Structure and Transport in Ethylene Carbonate from Molecular Dynamics Simulations. J. Phys. Chem. B 2006, 110, 4971-4977.

    Google Scholar 

  54. Wu, H.; Wick, C. D., Computational Investigation on the Role of Plasticizers on Ion Conductivity in Poly(Ethylene Oxide) Litfsi Electrolytes. Macromolecules 2010, 43, 3502-3510.

    Google Scholar 

  55. Borodin, O.; Smith, G. D., Development of Many-Body Polarizable Force Fields for Li-Battery Applications: 2. Litfsi-Doped Oligoether, Polyether, and Carbonate-Based Electrolytes. J. Phys. Chem. B 2006, 110, 6293-6299.

    Google Scholar 

  56. Seo, D. M.; Borodin, O.; Han, S.-D.; Boyle, P. D.; Henderson, W. A., Electrolyte Solvation and Ionic Association II. Acetonitrile-Lithium Salt Mixtures: Highly Dissociated Salts. J. Electrochem. Soc 2012, 159, A1489-A1500.

    Google Scholar 

  57. Seo, D. M.; Borodin, O.; Han, S.-D.; Ly, Q.; Boyle, P. D.; Henderson, W. A., Electrolyte Solvation and Ionic Association. I. Acetonitrile-Lithium Salt Mixtures: Intermediate and Highly Associated Salts. J. Electrochem. Soc 2012, 159, A553-A565.

    Google Scholar 

  58. Seo, D. M.; Borodin, O.; Balogh, D.; O’Connell, M.; Ly, Q.; Han, S.-D.; Passerini, S.; Henderson, W. A., Electrolyte Solvation and Ionic Association III. Acetonitrile-Lithium Salt Mixtures–Transport Properties. J. Electrochem. Soc 2013, 160, A1061-A1070.

    Google Scholar 

  59. Borodin, O.; Smith, G. D.; Geiculescu, O.; Creager, S. E.; Hallac, B.; DesMarteau, D., Li+ Transport in Lithium Sulfonylimide-Oligo(Ethylene Oxide) Ionic Liquids and Oligo(Ethylene Oxide) Doped with Litfsi. J. Phys. Chem. B 2006, 110, 24266-24274.

    Google Scholar 

  60. Siqueira, L. J. A.; Ribeiro, M. C. C., Molecular Dynamics Simulation of the Polymer Electrolyte Poly(Ethylene Oxide)/Liclo4. Ii. Dynamical Properties. J. Chem. Phys. 2006, 125, 214903-214908.

    Google Scholar 

  61. Borodin, O.; Smith, G. D., Molecular Dynamics Simulation Study of Lii-Doped Diglyme and Poly(Ethylene Oxide) Solutions J. Phys. Chem. B 2000, 104, 8017-8022.

    Google Scholar 

  62. Li, S., et al., Molecular Dynamics Simulation of Litfsi-Acetamide Electrolytes: Structural Properties. J. Phys. Chem. B 2008, 112, 6398-6410.

    Google Scholar 

  63. Soetens, J. C.; Millot, C.; Maigret, B., Molecular Dynamics Simulation of Li+BF4 - in Ethylene Carbonate, Propylene Carbonate, and Dimethyl Carbonate Solvents. J. Phys. CHem. A 1998, 102, 1055-1061.

    Google Scholar 

  64. Takeuchi, M.; Kameda, Y.; Umebayashi, Y.; Ogawa, S.; Sonoda, T.; Ishiguro, S. I.; Fujita, M.; Sano, M., Ion-Ion Interactions of LiPF6 and LiBF4 in Propylene Carbonate Solutions. J. Mol. Liq. 2009, 148, 99-108.

    Google Scholar 

  65. Brandell, D.; Liivat, A.; Aabloo, A.; Thomas, J. O., Molecular Dynamics Simulation of the Crystalline Short-Chain Polymer System LiPF6 PEO6 (M-W Similar to 1000). Journal of Materials Chemistry 2005, 15, 4338-4345.

    Google Scholar 

  66. Brandell, D.; Liivat, A.; Kasemagi, H.; Aabloo, A.; Thomas, J. O., Molecular Dynamics Simulation of the Lipf6 Center Dot Peo6 Structure. J. Mater. Chem. 2005, 15, 1422-1428.

    Google Scholar 

  67. Borodin, O.; Smith, G. D.; Jaffe, R. L., Ab Initio Quantum Chemistry and Molecular Dynamics Simulations Studies of LiPF6/Poly(Ethylene Oxide) Interactions J. Comput Chem. 2001, 22, 641-654.

    Google Scholar 

  68. Li, T.; Balbuena, P. B., Theoretical Studies of Lithium Perchlorate in Ethylene Carbonate, Propylene Carbonate, and Their Mixtures. J. Electrochem. Soc. 1999, 146, 3613-3622.

    Google Scholar 

  69. Leung, K.; Budzien, J. L., Ab Initio Molecular Dynamics Simulations of the Initial Stages of Solid-Electrolyte Interphase Formation on Lithium Ion Battery Graphitic Anodes. Phys. Chem. Chem. Phys. 2010, 12, 6583-6586.

    Google Scholar 

  70. von Wald Cresce, A.; Borodin, O.; Xu, K., Correlating Li+ Solvation Sheath Structure with Interphasial Chemistry on Graphite. J. Phys. Chem. C 2012, 116, 26111-26117.

    Google Scholar 

  71. Kameda, Y.; Umebayashi, Y.; Takeuchi, M.; Wahab, M. A.; Fukuda, S.; Ishiguro, S. I.; Sasaki, M.; Amo, Y.; Usuki, T., Solvation Structure of Li+ in Concentrated LiPF6-Propylene Carbonate Solutions. J. Phys. Chem. B 2007, 111, 6104-6109.

    Google Scholar 

  72. Xu, K., Electrolytes and Interphasial Chemistry in Li Ion Devices. Energies 2010, 3, 135-154.

    Google Scholar 

  73. Xu, K.; von Cresce, A.; Lee, U., Differentiating Contributions to “Ion Transfer” Barrier from Interphasial Resistance and Li+ Desolvation at Electrolyte/Graphite Interface. Langmuir 2010, 26, 11538-11543.

    Google Scholar 

  74. von Cresce, A.; Xu, K., Preferential Solvation of Li+ Directs Formation of Interphase on Graphitic Anode. Electrochem. and Solid-State Lett. 2011, 14, A154-A156.

    Google Scholar 

  75. Takeuchi, M.; Matubayasi, N.; Kameda, Y.; Minofar, B.; Ishiguro, S.; Umebayashi, Y., Free-Energy and Structural Analysis of Ion Solvation and Contact Ion-Pair Formation of Li+ with BF4 - and PF6 - in Water and Carbonate Solvents. J. Phys. Chem. B 2012, 116, 6476-6487.

    Google Scholar 

  76. Vatamanu, J.; Borodin, O.; Smith, G. D., Molecular Dynamics Simulation Studies of the Structure of a Mixed Carbonate/Lipf6 Electrolyte near Graphite Surface as a Function of Electrode Potential. J. Phys. Chem. C 2012, 116, 1114-1121.

    Google Scholar 

  77. Borodin, O.; Smith, G. D., Li+ Transport Mechanism in Oligo(Ethylene Oxide)S Compared to Carbonates. J. Solution. Chem. 2007, 36, 803-813.

    Google Scholar 

  78. Newman, J.; Thomas, K. E.; Hafezi, H.; Wheeler, D. R., Modeling of Lithium-Ion Batteries. J. Power Sources 2003, 119, 838-843.

    Google Scholar 

  79. Hayashi, K.; Nemoto, Y.; Tobishima, S.; Yamaki, J., Electrolyte for High Voltage Li/LiMN1.9Co0.1O4 Cells. J. Power Sources, 1997, 68, 316-319.

    Google Scholar 

  80. Saunier, J.; Gorecki, W.; Alloin, F.; Sanchez, J. Y., Nmr Study of Cation, Anion, and Solvent Mobilities in Macroporous Poly(Vinylidene Fluoride). Journal of Physical Chemistry B 2005, 109, 2487-2492.

    Google Scholar 

  81. Hayamizu, K.; Aihara, Y.; Arai, S.; Martinez, C. G., Pulse-Gradient Spin-Echo H-1, Li-7, and F-19 Nmr Diffusion and Ionic Conductivity Measurements of 14 Organic Electrolytes Containing LiN(SO2CF3)2. J. Phys. Chem. B 1999, 103, 519-524.

    Google Scholar 

  82. Aihara, Y.; Bando, T.; Nakagawa, H.; Yoshida, H.; Hayamizu, K.; Akiba, E.; Price, W. S., Ion Transport Properties of Six Lithium Salts Dissolved in Gamma-Butyrolactone Studied by Self-Diffusion and Ionic Conductivity Measurements. J. Electrochem. Soc. 2004, 151, A119-A122.

    Google Scholar 

  83. Paillard, E.; Zhou, Q.; Henderson, W. A.; Appetecchi, G. B.; Montanino, M.; Passerini, S., Electrochemical and Physicochemical Properties of PY14FSI-Based Electrolytes with LiFSI. J. Electrochem. Soc. 2009, 156, A891-A895.

    Google Scholar 

  84. Fox, D. M.; Awad, W. H.; Gilman, J. W.; Maupin, P. H.; De Long, H. C.; Trulove, P. C., Flammability, Thermal Stability, and Phase Change Characteristics of Several Trialkylimidazolium Salts. Green Chem. 2003, 5, 724-727.

    Google Scholar 

  85. Li, Z.; Smith, G. D.; Bedrov, D., Li+ Solvation and Transport Properties in Ionic Liquid/Lithium Salt Mixtures: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2012, 116, 12801-12809.

    Google Scholar 

  86. Solano, C. J. F.; Jeremias, S.; Paillard, E.; Beljonne, D.; Lazzaroni, R., A Joint Theoretical/Experimental Study of the Structure, Dynamics, and Li+ Transport in Bis([Tri]Fluoro[Methane]Sulfonyl)Imide [T]Fsi-Based Ionic Liquids. J. Chem. Phys. 2013, 139, 034502.

    Google Scholar 

  87. Borodin, O.; Vatamanu, J.; Xing, L.; Smith, G.; Bedrov, D., Bulk and Interfacial Properties of Ionic Liquids and Their Mixtures with Lithium Salts. Meeting Abstracts 2012, MA2012-02, 3620.

    Google Scholar 

  88. Smith, G. D.; Borodin, O.; Russo, S. P.; Rees, R. J.; Hollenkamp, A. F., A Molecular Dynamics Simulation Study of LiFePO4/Electrolyte Interfaces: Structure and Li+ Transport in Carbonate and Ionic Liquid Electrolytes. Phys. Chem. Chem. Phys. 2009, 11, 9884-9897.

    Google Scholar 

  89. MĂ©ndez-Morales, T.; Carrete, J.; BouzĂłn-Capelo, S.; PĂ©rez-RodrĂ­guez, M.; Cabeza, Ă“.; Gallego, L. J.; Varela, L. M., MD Simulations of the Formation of Stable Clusters in Mixtures of Alkaline Salts and Imidazolium-Based Ionic Liquids. J. Phys. Chem. B 2013, 117, 3207-3220.

    Google Scholar 

  90. Monteiro, M. J.; Bazito, F. F. C.; Siqueira, L. J. A.; Ribeiro, M. C. C.; Torresi, R. M., Transport Coefficients, Raman Spectroscopy, and Computer Simulation of Lithium Salt Solutions in an Ionic Liquid. J. Phys. Chem. B. 2008, 112, 2102-2109.

    Google Scholar 

  91. Borodin, O., Polarizable Force Field Development and Molecular Dynamics Simulations of Ionic Liquids. J. Phys. Chem. B 2009, 113, 11463-11478.

    Google Scholar 

  92. Castiglione, F.; Ragg, E.; Mele, A.; Appetecchi, G. B.; Montanino, M.; Passerini, S., Molecular Environment and Enhanced Diffusivity of Li+ Ions in Lithium-Salt-Doped Ionic Liquid Electrolytes. J. Phys. Chem. Lett. 2011, 2, 153-157.

    Google Scholar 

  93. Tokuda, H.; Ishii, K.; Susan, M. A. B. H.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M., Physicochemical Properties and Structures of Room-Temperature Ionic Liquids. 3. Variation of Cationic Structures J. Phys. Chem. B 2006, 110, 2833-2839.

    Google Scholar 

  94. Lassegues, J. C.; Grondin, J.; Aupetit, C.; Johansson, P., Spectroscopic Identification of the Lithium Ion Transporting Species in Litfsi-Doped Ionic Liquids. J. Phys. Chem. A 2009, 113, 305-314.

    Google Scholar 

  95. Tasaki, K.; Goldberg, A.; Lian, J. J.; Walker, M.; Timmons, A.; Harris, S. J., Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents. J. Electrochem. Soc. 2009, 156, A1019-A1027.

    Google Scholar 

  96. Shi, S. Q.; Lu, P.; Liu, Z. Y.; Qi, Y.; Hector, L. G.; Li, H.; Harris, S. J., Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase. J. Am. Chem. Soc. 2012, 134, 15476-15487.

    Google Scholar 

  97. Chen, Y. C.; Ouyang, C. Y.; Song, L. J.; Sun, Z. L., Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase from Density Functional Theory Study. J. Phys. Chem. C 2011, 115, 7044-7049.

    Google Scholar 

  98. Borodin, O.; Zhuang, G. V.; Ross, P. N.; Xu, K., Molecular Dynamics Simulations and Experimental Study of Lithium Ion Transport in Dilithium Ethylene Dicarbonate. J. Phys. Chem. C 2013, 117, 7433-7444.

    Google Scholar 

  99. Xu, K.; Zhuang, G. V.; Allen, J. L.; Lee, U.; Zhang, S. S.; Ross, P. N.; Jow, T. R., Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries. J. Phys. Chem. B 2006, 110, 7708-7719.

    Google Scholar 

  100. Zhuang, G. V.; Xu, K.; Yang, H.; Jow, T. R.; Ross, P. N., Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in 1.2 M LiPF6/EC:EMC Electrolyte. J. Phys. Chem. B 2005, 109, 17567-17573.

    Google Scholar 

  101. Jow, T. R.; Allen, J.; Marx, M.; Nechev, K.; Deveney, B.; Rickman, S., (Invited) Electrolytes, Sei and Charge Discharge Kinetics in Li-Ion Batteries. ECS Transactions 2010, 25, 3-12.

    Google Scholar 

  102. Jow, T. R.; Marx, M. B.; Allen, J. L., Distinguishing Li+ Charge Transfer Kinetics at Nca/Electrolyte and Graphite/Electrolyte Interfaces, and NCA/Electrolyte and Lfp/Electrolyte Interfaces in Li-Ion Cells. J. Electrochem. Soc. 2012, 159, A604-A612.

    Google Scholar 

  103. Xu, K.; Lam, Y. F.; Zhang, S. S.; Jow, T. R.; Curtis, T. B., Solvation Sheath of Li+ in Nonaqueous Electrolytes and Its Implication of Graphite/Electrolyte Interface Chemistry. J. Phys. Chem. C 2007, 111, 7411-7421.

    Google Scholar 

  104. Zhang, S. S.; Xu, K.; Jow, T. R., Eis Study on the Formation of Solid Electrolyte. Electrochimica Acta 2006, 51, 1636-1640.

    Google Scholar 

  105. Zhang, S. S.; Xu, K.; Jow, T. R., Charge and Discharge Characteristics of a Commercial Licoo2-Based 18650 Li-Ion Battery. J. Power Sources 2006, 160, 1403-1409.

    Google Scholar 

  106. Xu, K., “Charge-Transfer” Process at Graphite/Electrolyte Interface and the Solvation Sheath Structure of Li+ in Nonaqueous Electrolytes. J. Electrochem. Soc. 2007, 154, A162-A167.

    Google Scholar 

  107. Abraham, D. P.; Heaton, J. R.; Kang, S. H.; Dees, D. W.; Jansen, A. N., Investigating the Low-Temperature Impedance Increase of Lithium-Ion Cells. J. Electrochem. Soc. 2008, 155, A41-A47.

    Google Scholar 

  108. Yamada, I.; Iriyama, Y.; Abe, T.; Ogumi, Z., Lithium-Ion Transfer between Lixcoo2 and Polymer Gel Electrolytes. Sci. Technol. Adv. Mat. 2006, 7, 519-523.

    Google Scholar 

  109. Yamada, Y.; Iriyama, Y.; Abe, T.; Ogumi, Z., Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film. Langmuir 2009, 25, 12766-12770.

    Google Scholar 

  110. Yamada, Y.; Sagane, F.; Iriyama, Y.; Abe, T.; Ogumi, Z., Kinetics of Lithium-Ion Transfer at the Interface between Li0.35La0.55TiO3 and Binary Electrolytes. J. Phys. Chem. C 2009, 113, 14528-14532.

    Google Scholar 

  111. Ogumi, Z., Interfacial Reactions of Lithium-Ion Batteries. Electrochemistry 2010, 78, 319-324.

    Google Scholar 

  112. Jow, T. R.; Zhang, S. S.; Xu, K.; Allen, J. L., Electrolytes for Low Temperature Operations of Li-Ion Batteries. ECS Transactions 2007, 3, 51-58

    Google Scholar 

  113. Xu, K.; von Cresce, A., Interfacing Electrolytes with Electrodes in Li Ion Batteries. J. Mater. Chem. 2011, 21, 9849-9864.

    Google Scholar 

  114. Xing, L. D.; Vatamanu, J.; Borodin, O.; Smith, G. D.; Bedrov, D., Electrode/Electrolyte Interface in Sulfolane-Based Electrolytes for Li Ion Batteries: A Molecular Dynamics Simulation Study. J. Phys. Chem. C 2012, 116, 23871-23881.

    Google Scholar 

  115. Yu, L.; Liu, H.; Wang, Y.; Kuwata, N.; Osawa, M.; Kawamura, J.; Ye, S., Preferential Adsorption of Solvents on the Cathode Surface of Lithium Ion Batteries. Angew. Chemie Int. Ed. 2013, 125, 5865–5868.

    Google Scholar 

  116. Watanabe, Y.; Kinoshita, S. I.; Wada, S.; Hoshino, K.; Morimoto, H.; Tobishima, S. I., Electrochemical Properties and Lithium Ion Solvation Behavior of Sulfone-Ester Mixed Electrolytes for High-Voltage Rechargeable Lithium Cells. J. Power Sources 2008, 179, 770-779.

    Google Scholar 

  117. Xu, K.; Angell, C. A., Sulfone-Based Electrolytes for Lithium-Ion Batteries. J. Electrochem. Soc. 2002, 149, A920-A926.

    Google Scholar 

  118. Abouimrane, A.; Belharouak, I.; Amine, K., Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries. Electrochem. Commun. 2009, 11, 1073-1076.

    Google Scholar 

  119. Merlet, C.; Rotenberg, B.; Madden, P. A.; Salanne, M., Computer Simulations of Ionic Liquids at Electrochemical Interfaces. Phys. Chem. Chem. Phys. 2013, 15, 15781-15792.

    Google Scholar 

  120. Vatamanu, J.; Borodin, O.; Smith, G. D., Molecular Insights into the Potential and Temperature Dependences of the Differential Capacitance of a Room-Temperature Ionic Liquid at Graphite Electrodes. J. Am. Chem. Soc. 2010, 132, 14825-14833.

    Google Scholar 

  121. Feng, G.; Jiang, D.-e.; Cummings, P. T., Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces. J. Chem. Theory and Comput. 2012, 8, 1058-1063.

    Google Scholar 

  122. Feng, G.; Li, S.; Atchison, J. S.; Presser, V.; Cummings, P. T., Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature. J Phys Chem C 2013, 117, 9178–9186.

    Google Scholar 

  123. Vatamanu, J.; Cao, L.; Borodin, O.; Bedrov, D.; Smith, G. D., On the Influence of Surface Topography on the Electric Double Layer Structure and Differential Capacitance of Graphite/Ionic Liquid Interfaces. J. Phys. Chem. Lett. 2011, 2, 2267-2272.

    Google Scholar 

  124. Masia, M.; Rey, R., Computational Study of Gamma-Butyrolactone and Li+/Gamma-Butyrolactone in Gas and Liquid Phases. J. Phys. Chem. B 2004, 108, 17992-18002.

    Google Scholar 

  125. Silva, L. B.; Freitas, L. C. G., Structural and Thermodynamic Properties of Liquid Ethylene Carbonate and Propylene Carbonate by Monte Carlo Simulations. J. Mol. Struct.-Theochem 2007, 806, 23-34.

    Google Scholar 

  126. Wang, Y. X.; Balbuena, P. B., Combined Ab Initio Quantum Mechanics and Classical Molecular Dynamics Studies of Polyphosphazene Polymer Electrolytes: Competitive Solvation of Li+ and LiCF3SO3. J. Phys. Chem. B 2004, 108, 15694-15702.

    Google Scholar 

  127. Yu, J.; Balbuena, P. B.; Budzien, J.; Leung, K., Hybrid Dft Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate. J. Electrochem. Soc. 2011, 158, A400-A410.

    Google Scholar 

  128. Masia, M.; Probst, M.; Rey, R., Ethylene Carbonate-Li+: A Theoretical Study of Structural and Vibrational Properties in Gas and Liquid Phases. J. Phys. Chem. B 2004, 108, 2016-2027.

    Google Scholar 

  129. Wang, Y. X.; Balbuena, P. B., Theoretical Studies on Cosolvation of Li Ion and Solvent Reductive Decomposition in Binary Mixtures of Aliphatic Carbonates. Int. J. Quant. Chem. 2005, 102, 724-733.

    Google Scholar 

  130. Sutjianto, A.; Curtiss, L. A., Li+-Diglyme Complexes: Barriers to Lithium Cation Migration. J. Phys. CHem. A 1998, 102, 968-974.

    Google Scholar 

  131. Scheers, J.; Kalita, M.; Johansson, P.; Zukowska, G. Z.; Wieczorek, W.; Jacobsson, P., Anion-Additive Interactions Studied by Ab Initio Calculations and Raman Spectroscopy. J. Electrochem. Soc. 2009, 156, A305-A308.

    Google Scholar 

  132. Jonsson, E.; Armand, M.; Johansson, P., Novel Pseudo-Delocalized Anions for Lithium Battery Electrolytes. Phys. Chem. Chem. Phys. 2012, 14, 6021-6025.

    Google Scholar 

  133. Scheers, J.; Johansson, P., Comment on “Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiTFSI in Linear Carbonate Solvents” [J. Electrochem. Soc., 158, A74 (2011)]. J. Electrochem. Soc. 2012, 159, S1-S2.

    Google Scholar 

  134. Wang, Y. X.; Balbuena, P. B., Associations of Alkyl Carbonates: Intermolecular C-H Center Dot Center Dot Center Dot O Interactions. J. Phys. Chem. A 2001, 105, 9972-9982.

    Google Scholar 

  135. Leung, K., Two-Electron Reduction of Ethylene Carbonate: A Quantum Chemistry Re-Examination of Mechanisms. Chem. Phys. Lett. 2013, 568–569, 1-8.

    Google Scholar 

  136. Tasaki, K., Solvent Decompositions and Physical Properties of Decomposition Compounds in Li-Ion Battery Electrolytes Studied by DFT Calculations and Molecular Dynamics Simulations. J. Phys. Chem. B 2005, 109, 2920-2933.

    Google Scholar 

Download references

Acknowledgement

 This work was supported via an Interagency Agreement between the US Department of Energy and the US Army Research Laboratory under DE-IA01-11EE003413 for the Office of Vehicle Technologies Programs including the ARB Program. Discussions with Arthur von Cresce, T. R. Jow, Kang Xu, Kevin Leung, Wesley Henderson, Lidan Xing, Dmitry Bedrov, Samuel Delp, and Brett Lucht are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Borodin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borodin, O. (2014). Molecular Modeling of Electrolytes. In: Jow, T., Xu, K., Borodin, O., Ue, M. (eds) Electrolytes for Lithium and Lithium-Ion Batteries. Modern Aspects of Electrochemistry, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0302-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0302-3_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0301-6

  • Online ISBN: 978-1-4939-0302-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics