Skip to main content

The Scaling Limit for Zero-Temperature Planar Ising Droplets: With and Without Magnetic Fields

  • Conference paper
  • First Online:
Topics in Percolative and Disordered Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 69))

Abstract

We consider the continuous time, zero-temperature heat-bath dynamics for the nearest-neighbor Ising model on \(\mathbb Z^2\) with positive magnetic field. For a system of size \(L\in{\mathbb N}\), we start with initial condition σ such that \(\sigma_x=-1\) if \(x\in[-L,L]^2\) and \(\sigma_x=+1\) and investigate the scaling limit of the set of • spins when both time and space are rescaled by L. We compare the obtained result and its proof with the case of zero-magnetic fields, for which a scaling result was proved by Lacoin et al. (J Eur Math Soc, in press). In that case, the time-scaling is diffusive and the scaling limit is given by anisotropic motion by curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andjel, E.D.: Invariant measure for the zero-range process. Ann. Probab. 10, 525–547 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Caputo, P., Martinelli, F., Simenhaus, F., Toninelli, F.L.: “Zero” temperature stochastic 3D Ising model and dimer covering fluctuation: a first step towards mean curvature motion. Comm. Pure Appl. Math. 64, 778–831 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cerf, R., Louhichi, S.: The initial drift of a 2D droplet at zero temperature. Probab. Theory Relat. Fields 137, 379–428 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chayes, L., Schonmann, R.H., Swindle, G.: Lifshitz` law for the volume of a 2-dimensional droplet at zero temperature. J. Stat. Phys. 79, 821–831 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. De Masi, A., Presutti, E., Scacciatelli, E.: The weakly assymetric simple exclusion process. Ann. Inst. H. Poincaré Proba. Stat 25, 1–35 (1989)

    MATH  MathSciNet  Google Scholar 

  6. Dolcetta, I., Lions, P.L.: Viscosity Solutions and Applications. Springer, Berlin (1995)

    Google Scholar 

  7. Eggleston, H.G.: Convexity. Cambridge University Press, New York (1958)

    Book  MATH  Google Scholar 

  8. Gage, M.E., Li, Y.: Evolving plane curvature in relative geometries II. Duke Math. J. 75, 79–98 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gärtner, J.: Convergence towards Burgers equation and propagation of chaos for weakly asymmetric simple exclusion process. Stoch. Proc. Appl. 27, 233–260 (1987)

    Article  Google Scholar 

  10. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1986)

    MathSciNet  Google Scholar 

  11. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  12. Kipnis, C., Olla, S., Varadhan, S.R.S.: Hydrodynamic limits and large deviation for simple exclusion process. Comm. Pure Appl. Math. 42, 115–137 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lacoin, H.: Approximate Lifshitz law for the zero-temperature stochastic Ising model in any dimension. Comm. Math. Phys. (in press)

    Google Scholar 

  14. Lacoin, H.: The scaling limit of polymer dynamics in the pinned phase. arXiv:1204.1253 [math-ph] (preprint)

    Google Scholar 

  15. Lacoin, H., Simenhaus, F., Toninelli, F.L.: Zero-temperature stochastic Ising model in two dimension and anisotropic curve-shortening flow. J. Eur. Math. Soc. arXiv:1112.3160 [math-ph] (in press)

    Google Scholar 

  16. Lacoin, H., Simenhaus, F., Toninelli, F.L.: The heat equation shrinks Ising droplets to points (preprint)

    Google Scholar 

  17. Levin, D., Peres, Y., Wilmer, E.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  18. Lifshitz, I.M.: Kinetics of ordering during second order phase transitions. Sov. Phys. JETP 15, 939–942 (1962)

    Google Scholar 

  19. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  20. Lubetzky, E., Sly, A.: Cut-off for the Ising model on the lattice. Invent. Math. (in press)

    Google Scholar 

  21. Lubetzky, E., Sly, A.: Critical Ising on the square lattice mixes in polynomial time. Comm. Math. Phys. (in press)

    Google Scholar 

  22. Lubetzky, E., Martinelli, F., Sly, A., Toninelli, F.L.: Quasi-polynomial mixing of the 2D stochastic Ising model with “plus” boundary up to criticality. J. Eur. Math. Soc. (in press)

    Google Scholar 

  23. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \(\mathbb Z^d\). Comm. Math. Phys. 140, 417–448 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rost, H.: Nonequilibrium behaviour of a many particle process: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58, 41–53 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  26. Seppäläinen, T.: Existence of hydrodynamics for the totally asymetric simple K-exclusion process. Ann. Probab. 27, 361–415 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schonmann, R.H.: Slow droplet-driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region. Comm. Math. Phys. 161, 1–49 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Spohn, H.: Interface motion in models with stochastic dynamics. J. Stat. Phys. 71, 1081–1132 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sugimine, N.: A lower bound on the spectral gap of the 3-dimensional stochastic Ising models. J. Math. Kyoto Univ. 42, 751–788 (2002)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank the organizers of the 2012 PASI conference, where he had stimulating discussion with other participants, Milton Jara, for valuable bibliographic help concerning TASEP, and François Simenhaus and Fabio Toninelli for numerous enlightening discussions on the subject. He is also grateful to the anonymous referee for his detailed report. This work was partially written during the author’s stay at Instituto de Matematica Pura e Applicada, he acknowledges the kind hospitality and the support of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Lacoin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Lacoin, H. (2014). The Scaling Limit for Zero-Temperature Planar Ising Droplets: With and Without Magnetic Fields. In: Ramírez, A., Ben Arous, G., Ferrari, P., Newman, C., Sidoravicius, V., Vares, M. (eds) Topics in Percolative and Disordered Systems. Springer Proceedings in Mathematics & Statistics, vol 69. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0339-9_4

Download citation

Publish with us

Policies and ethics