Skip to main content

Agent Based Modeling to Inform the Design of Multiuser Systems

  • Chapter
  • First Online:
Ways of Knowing in HCI

Abstract

Agent Based Modeling studies group activity by simulating the individuals in it and allowing group-level phenomena to emerge. It can be used to integrate theories to inform designs of technology for groups. Researchers use theories as the basis of the rules of how individuals behave (e.g., what motivates users to contribute to an online community). They can run virtual experiments by changing parameters of the model (e.g., the topical focus in an online community) to see what collective behaviors emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Another rare form of model validation is called model alignment or “docking” in short, under which researchers compare two or more models to see if they can produce the same results. A good example is Axtell and colleagues’ work (1996) to align the cultural transmission model and the Sugarscape model. They call for wider practice of docking among modelers.

References

  • Axelrod, R. (1986). An evolutionary approach to norms. American Political Science Review, 80, 1095–1111.

    Article  Google Scholar 

  • Axelrod, R. (1997). The complexity of cooperation: Agent based models of competition and collaboration. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Axelrod, R. (1997a). The dissemination of culture: A model with local convergence and global polarization. Journal of Conflict Resolution, 41, 203–226.

    Article  Google Scholar 

  • Axelrod, R. (1997b). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Axelrod, R. (2005). Agent-based modeling as a bridge between disciplines. In K. L. Judd, & L. Tesfatsion (Eds.), Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics. Amsterdam: Elsevier.

    Google Scholar 

  • Bao, P., Hecht, B., Carton, S., Quaderi, M., Horn, M., & Gergle, D. (2012). Omnipedia: Bridging the Wikipedia language gap. Proceedings of the ACM Conference on Human-Factors in Computing Systems (pp. 1075–1084). New York: ACM Press.

    Google Scholar 

  • Berscheid, E. (1994). Interpersonal relationships. Annual Review of Psychology, 45, 79–129.

    Google Scholar 

  • Bryant, S. L., Forte, A., & Bruckman, A. (2005). Becoming Wikipedian: Transformation of participation in a collaborative online encyclopedia. Proceedings of the 2005 International ACM SIGGROUP Conference on Supporting Group Work (pp. 1–10). New York: ACM.

    Google Scholar 

  • Burton, R. M., & Obel, B. (1995). The validity of computational models in organization science: From model realism to purpose of the model. Computational and Mathematical Organization Theory, 1(1), 57–71.

    Article  Google Scholar 

  • Butler, B. S. (2001). Membership size, communication activity, and sustainability: A resource-based model of online social structures. Information Systems Research, 12(4), 346–362.

    Article  Google Scholar 

  • Carley, K. M. (1991). A theory of group stability. American Sociological Review, 56(3), 331–354.

    Article  Google Scholar 

  • Carley, K. M. (1992). Organizational learning and personnel turnover. Organizational Science, 3(1), 20–46.

    Article  Google Scholar 

  • Carley, K.M. (1996). Validating computational models. Working paper, Pittsburgh, PA.

    Google Scholar 

  • Chatman, J. A., & Flynn, F. J. (2005). Full-cycle micro-organizational behavior research. Organization Science, 16(4), 434–447.

    Article  Google Scholar 

  • Davis, J., Eisenhardt, K. M., & Bingham, C. B. (2007). Developing theory through simulation methods. Academy of Management Review, 32(2), 480–499.

    Article  Google Scholar 

  • DiMicco, J., Millen, D. R., Geyer, W., Dugan, C., Brownholtz, B., & Muller, M. (2008). Motivations for social networking at work. Proceedings of the ACM Conference on Human-Factors in Computing Systems (pp. 711–720). New York: ACM Press.

    Google Scholar 

  • Drenner, S., Sen, S., & Terveen, L. (2008). Crafting the initial user experience to achieve community goals. Proceedings of the 2008 ACM Conference on Recommender Systems. (pp. 187–194). New York, NY: ACM

    Google Scholar 

  • Epstein, J. M., & Axtell, R. L. (1996). Growing artificial societies: Social science from the bottom up. Boston, MA: MIT Press.

    Google Scholar 

  • Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41–60.

    Article  MathSciNet  Google Scholar 

  • Faraj, S., & Johnson, S. L. (2011). Network exchange patterns in online communities. Organization Science, 22(6), 1464–1480.

    Google Scholar 

  • Festinger, L. (1954). A theory of social comparison processes (Vol. 7). Indianapolis, IN: Bobbs-Merrill.

    Google Scholar 

  • Fisher, D., Smith, M., & Welser, H.T. (2006). You are who you talk to: Detecting roles in Usenet newsgroups: Proceedings of the 39th Hawaii International Conference on System Sciences in Waikoloa, Big Island, Hawaii.

    Google Scholar 

  • Fogarty, J., Lai, J., & Christensen, J. (2004). Presence versus availability: The design and evaluation of a context-aware communication client. International Journal Human-Computer Studies, 61(3), 299–317.

    Article  Google Scholar 

  • Frank, F., & Anderson, L. R. (1971). Effects of task and group size upon group productivity and member satisfaction. Sociometry, 34(1), 135–149.

    Article  Google Scholar 

  • Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223, 120–123.

    Article  Google Scholar 

  • Gilbert, N. (2008). Agent-based models. In T. F. Liao (Ed.), Quantitative applications in the social sciences. Los Angeles, CA: Sage.

    Google Scholar 

  • Grudin, J. (1994). Groupware and social dynamics: Eight challenges for developers. Communications of ACM, 37(1), 92–105.

    Google Scholar 

  • Hannan, M. T., & Freeman, J. (1989). Organizational ecology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Harper, F.M., Frankowski, D., Drenner, S., Ren, Y., Kiesler, S., Terveen, L., Kraut, R. E., & Riedl, J. T. (2007). Talk amongst yourselves: Inviting users to participate in online conversations. Proceedings of the 12th International Conference on Intelligent User Interfaces (pp. 62–71). Honolulu, Hawaii.

    Google Scholar 

  • Harrison, J. R., & Carroll, G. R. (1991). Keeping the faith: A model of cultural transmission in formal organizations. Administrative Science Quarterly, 36(4), 552–582.

    Google Scholar 

  • Harrison, J. R., Lin, Z., Carroll, G. R., & Carley, K. M. (2007). Simulation modeling in organizational and management research. Academy of Management Review, 32(4), 1229–1245.

    Article  Google Scholar 

  • Hogg, M. A. (1996). Social identity, self-categorization, and the small group. In E. H. Witte & J. H. Davis (Eds.), Small group processes and interpersonal relations (2nd ed., pp. 227–253). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Jones, Q., Ravid, G., & Rafaeli, S. (2004). Information overload and the message dynamics of online interaction spaces: A theoretical model and empirical exploration. Information Systems Research, 15(2), 194–210.

    Article  Google Scholar 

  • Karau, S. J., & Williams, K. D. (1993). Social loafing: A meta-analytic review and theoretical integration. Journal of Personality and Social Psychology, 65(4), 681–706.

    Article  Google Scholar 

  • Kluger, A., & DeNisi, A. (1996). Effects of feedback intervention on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119(2), 254.

    Google Scholar 

  • Kozlowski, K. J., & Klein, S. W. J. (2000). Multilevel theory, research, and methods in organizations: foundations, extensions, and new directions (Society for industrial and organizational psychology frontier series). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Kraut, R. E., & Resnick, P. (2012). Building successful online communities: Evidence-based social design. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ling, K., Beenen, G., Ludford, P. J., Wang, X., Chang, K., Li, X., et al. (2005). Using social psychology to motivate contributions to online communities. Journal of Computer Mediated Communication, 10(4), article 10.

    Google Scholar 

  • March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 2(1), 71–87.

    Article  MathSciNet  Google Scholar 

  • Macy, M. W. (1991). Chains of cooperation: Threshold effects in collective action. American Sociological Review, 56(6), 730–747.

    Google Scholar 

  • Macy, M. W., & Willer, R. (2002). From factors to actors: Computational sociology and agent based modeling. Annual Review of Sociology, 28, 143–166.

    Article  Google Scholar 

  • Maloney-Krichmar, D., & Preece, J. (2005). A multilevel analysis of sociability, usability, and community dynamics in an online health community. ACM Transactions on Computer-Human Interaction, 12(2), 201–232.

    Article  Google Scholar 

  • Markus, M. L. (1987). Towards a “critical mass” theory of interactive media: Universal access, interdependence, and diffusion. Communication Research, 14(5), 491–511.

    Article  Google Scholar 

  • Mathieu, J., & Zajac, D. (1990). A review and meta-analysis of the antecedents, correlates, and consequences of organizational commitment. Psychological Bulletin, 108(2), 171–194.

    Article  Google Scholar 

  • Myers, B., Hudson, S. E., & Pausch, R. (2000). Past, present, and future of user interface software tools. ACM Transactions on Computer-Human Interaction, 7(1), 3–28.

    Article  Google Scholar 

  • Nan, N. (2011). Capturing bottom-up information technology use processes: A complex adaptive systems model. MIS Quarterly, 35(2), 505–532.

    MathSciNet  Google Scholar 

  • Nan, N., Johnston, E., & Olson, J. (2008). Unintended consequences in central-remote office arrangements: A study coupling laboratory experiment with multi-agent simulation. Computational and Mathematical Organization Theory, 14(2), 57–83.

    Article  MATH  Google Scholar 

  • Nan, N., Johnston, E. W., Olson, J. S., & Bos, N. (2005). Beyond being in the lab: Using multi-agent modeling to isolate competing hypotheses. Proceedings of the ACM Conference on Human-Factors in Computing Systems (pp. 1693–1696). New York: ACM Press.

    Google Scholar 

  • Orlikowski, W. J. (1996). Improvising organizational transformation over time: A situated change perspective. Information Systems Research, 7(1), 63–92.

    Article  Google Scholar 

  • Perlow, L. A. (1999). The time famine: Toward a sociology of work time. Administrative Science Quarterly, 44(1), 57–81.

    Article  Google Scholar 

  • Preece, J. (2000). Online communities: designing usability supporting sociability. Chichester: Wiley.

    Google Scholar 

  • Prentice, D. A., Miller, D. T., & Lightdale, J. R. (1994). Asymmetries in attachments to groups and to their members: Distinguishing between common-identity and common-bond groups. Personality and Social Psychology Bulletin, 20(5), 484–493.

    Article  Google Scholar 

  • Ren, Y., Carley, K. M., & Argote, L. (2006). The contingency effects of transactive memory: When is it more beneficial to know what others know? Management Science, 52(5), 671–682.

    Article  Google Scholar 

  • Ren, Y., Harper, F. M., Drenner, S., Terveen, L., Kiesler, S., Riedl, J., & Kraut, R. E. (2012). Building member attachment in online communities: Applying theories of group identity and interpersonal bonds. MIS Quarterly, 36(3), 841-864.

    Google Scholar 

  • Ren, Y., & Kraut, R. E. (In press). Agent-based modeling to inform online community design: Impact of topical breadth, message volume, and discussion moderation on member commitment and contribution. Human-Computer Interaction.

    Google Scholar 

  • Ren, Y., Kraut, R. E., & Kiesler, S. (2007). Applying common identity and bond theory to design of online communities. Organization Studies, 28(3), 377–408.

    Article  Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34.

    Article  Google Scholar 

  • Ridings, C. M., & Gefen, D. (2004). Virtual community attraction: Why people hang out online. Journal of Computer Mediated Communication, 10(1), article 4.

    Google Scholar 

  • Roberts, J., Hann, I., & Slaughter, S. (2006). Understanding the motivations, participation, and performance of open source software development: A longitudinal study of the Apache projects. Management Science, 52(7), 984–1000.

    Article  Google Scholar 

  • Rogers, E. M., & Agarwala-Rogers, R. (1975). Organizational communication. In G. L. Hanneman & W. J. McEwen (Eds.), Communication behavior (pp. 218–236). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Sawyer, R. K. (2003). Artificial societies: Multiagent systems and the micro-macro link in sociological theory. Sociological Methods & Research, 31, 325–363.

    Article  MathSciNet  Google Scholar 

  • Schelling, T. C. (1969). Models of segregation. American Economic Review, 59(2), 488–493.

    Google Scholar 

  • Schelling, T. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1, 143–186.

    Article  Google Scholar 

  • Shami, N. S., Ehrlich, K., Gay, G., & Hancock, J. T. (2009). Making sense of strangers’ expertise from signals in digital artifacts. Proceedings of the ACM Conference on Human-Factors in Computing Systems (pp. 69–78). New York: ACM Press.

    Google Scholar 

  • Shapiro, C., & Varian, H. R. (1999). Information rules: A strategic guide to the network economy. Boston, MA: Harvard Business School Press.

    Google Scholar 

  • Smith, M. A. (1999). Invisible crowds in cyberspace: measuring and mapping the social structure of USENET. In M. A. Smith & P. Kollock (Eds.), Communities in cyberspace: Perspective on new forms of social organization (pp. 195–219). London: Routledge.

    Chapter  Google Scholar 

  • Strang, D., & Macy, M. (2001). “In search of excellence:” fads, success stories, and adaptive emulation. American Journal of Sociology, 107(1), 147–182.

    Article  Google Scholar 

  • Taber, C. S., & Timpone, R. J. (1996). Computational modeling. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Thom-Santelli, J., Millen, D. R., & Gergle, D. (2011). Organizational acculturation and social networking. Proceedings of the ACM Conference on Computer Supported Cooperative Work (pp. 313–316). New York: ACM Press.

    Google Scholar 

  • Treem, J. W., & Leonardi, P. M. (2012). Social media use in organizations: Exploring the affordances of visibility, editability, persistence, and association. Communication Yearbook, 36, 142–189.

    Google Scholar 

  • Vroom, V., Porter, L., & Lawler, E. (2005). Expectancy theories. In J. B. Miner (Ed.), Organizational behavior 1: Essential theories of motivation and leadership (pp. 94–113). New York, NY: M. E. Sharpe.

    Google Scholar 

  • Wasko, M., & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly, 29(1), 35–58.

    Google Scholar 

  • Welser, H. T., Cosley, D., Kossinets, G., Lin, A., Dokshin, F., Gay, G., & Smith, M. (2011). Finding social roles in Wikipedia. Proceedings of the 2011 iConference.

    Google Scholar 

  • Wilensky, U. (1999). NetLogo. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University.

    Google Scholar 

  • Wu, A., DiMicco, J. M., & Millen, D. R. (2010). Detecting professional versus personal closeness using an expertise social network site. Proceedings of the ACM Conference on Human-Factors in Computing Systems (pp. 1955–1964). New York: ACM Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ren, Y., Kraut, R.E. (2014). Agent Based Modeling to Inform the Design of Multiuser Systems. In: Olson, J., Kellogg, W. (eds) Ways of Knowing in HCI. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0378-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0378-8_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0377-1

  • Online ISBN: 978-1-4939-0378-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics