Skip to main content

Activation of Phospholipase C in Cardiac Hypertrophy

  • Chapter
  • First Online:
Phospholipases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

  • 6312 Accesses

Abstract

Norepinephrine is considered to mediate the cardiomyocyte hypertrophic response through α1-adrenoceptor activation of phospholipase C (PLC). However, the regulation of specific PLC isozyme gene and protein expression as well as activities in normal and hypertrophied myocardium is not completely defined. In this chapter, we provide an overview of the role of PLC-mediated signal transduction pathways in cardiac hypertrophy. We also identify some of the mechanisms that might be involved in the regulation of PLC isozyme gene expression, protein abundance, and activities. While PLC has a key role in cardiomyocyte hypertrophy, the evidence provided here suggests that PLC activities regulate their own gene expression that perpetuates the hypertrophic signal to produce a rapid progression of cardiac hypertrophy and ultimate transition to heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhalla NS, Heyliger CE, Beamish RE et al (1987) Pathophysiological aspects of myocardial hypertrophy. Can J Cardiol 3:183–196

    CAS  PubMed  Google Scholar 

  2. Hefti MA, Harder BA, Eppenberger HM, Schaub MC (1997) Signaling pathways in cardiac myocyte hypertrophy. J Mol Cell Cardiol 29:2873–2892

    CAS  PubMed  Google Scholar 

  3. Jaffre F, Callebert J, Sarre A et al (2004) Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1β, and tumor necrosis factor-α cytokine production by ventricular fibroblasts. Circulation 110:969–974

    CAS  PubMed  Google Scholar 

  4. Nishikawa K, Yoshida M, Kusuhara M et al (2006) Left ventricular hypertrophy in mice with a cardiac-specific overexpression of interleukin-1. Am J Physiol Heart Circ Physiol 291:H176–H183

    CAS  PubMed  Google Scholar 

  5. Schmidt BM, Schmieder RE (2005) Cardiotrophin: its importance as a pathogenetic factor and as a measure of left ventricular hypertrophy. J Hypertens 23:2151–2153

    CAS  PubMed  Google Scholar 

  6. Ponten A, Li X, Thoren P et al (2003) Transgenic overexpression of platelet-derived growth factor-C in the mouse heart induces cardiac fibrosis, hypertrophy, and dilated cardiomyopathy. Am J Pathol 163:673–682

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Cheng TH, Shih NL, Chen CH et al (2005) Role of mitogen-activated protein kinase pathway in reactive oxygen species-mediated endothelin-1-induced beta-myosin heavy chain gene expression and cardiomyocyte hypertrophy. J Biomed Sci 12:123–133

    CAS  PubMed  Google Scholar 

  8. Schnabel P, Mies F, Nohr T, Geisler M, Bohm M (2000) Differential regulation of phospholipase C-β isozymes in cardiomyocyte hypertrophy. Biochem Biophys Res Commun 275:1–6

    CAS  PubMed  Google Scholar 

  9. Ganguly PK, Lee SL, Beamish RE, Dhalla NS (1989) Altered sympathetic and adrenoceptors during the development of cardiac hypertrophy. Am Heart J 118:520–525

    CAS  PubMed  Google Scholar 

  10. Ruzicka M, Leenen FH (1995) Relevance of blockade of cardiac and circulatory angiotensin-converting enzyme for the prevention of volume overload-induced cardiac hypertrophy. Circulation 91:16–19

    CAS  PubMed  Google Scholar 

  11. Lear W, Ruzicka M, Leenen FH (1997) ACE inhibitors and cardiac ACE mRNA in volume overload-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol 273:H641–H646

    CAS  Google Scholar 

  12. Zhao W, Ahokas RA, Weber KT, Sun Y (2006) ANG-II-induced cardiac molecular and cellular events: role of aldosterone. Am J Physiol Heart Circ Physiol 29:H336–H343

    Google Scholar 

  13. Jesmin S, Zaedi S, Maeda S et al (2006) Endothelin antagonism suppresses plasma and cardiac endothelin-1 levels in SHRSPs at the typical hypertensive stage. Exp Biol Med 231:919–924

    CAS  Google Scholar 

  14. Cernacek P, Stewart DJ, Monge JC, Rouleau JL (2003) The endothelin system and its role in acute myocardial infarction. Can J Physiol Pharmacol 81:598–606

    CAS  PubMed  Google Scholar 

  15. Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037–3046

    CAS  PubMed  Google Scholar 

  16. Tappia PS, Singal T, Dent MR et al (2006) Phospholipid-mediated signaling in diseased myocardium. Future Lipidol 1:701–717

    CAS  Google Scholar 

  17. Tappia PS, Dent MR, Dhalla NS (2006) Oxidative stress and redox regulation of phospholipase D in myocardial disease. Free Radic Biol Med 41:349–361

    CAS  PubMed  Google Scholar 

  18. Tappia PS (2007) Phospholipid-mediated signaling systems as novel targets for treatment of heart disease. Can J Physiol Pharmacol 85:25–41

    CAS  PubMed  Google Scholar 

  19. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    CAS  PubMed  Google Scholar 

  20. Singal T, Dhalla NS, Tappia PS (2004) Phospholipase C may be involved in norepinephrine-induced cardiac hypertrophy. Biochem Biophys Res Commun 320:1015–1019

    CAS  PubMed  Google Scholar 

  21. Singal T, Dhalla NS, Tappia PS (2006) Norepinephrine-induced changes in gene expression of phospholipase C in cardiomyocytes. J Mol Cell Cardiol 41:126–137

    CAS  PubMed  Google Scholar 

  22. Tappia PS, Padua RR, Panagia V, Kardami E (1999) Fibroblast growth factor-2 stimulates phospholipase C β in adult cardiomyocytes. Biochem Cell Biol 77:569–575

    CAS  PubMed  Google Scholar 

  23. Guo Y, Rebecchi M, Scariata S (2005) Phospholipase C β2 binds to and inhibits phospholipase C δ1. J Biol Chem 280:1438–1447

    CAS  PubMed  Google Scholar 

  24. Fukami K (2002) Structure, regulation, and function of phospholipase C isozymes. J Biochem 131:293–299

    CAS  PubMed  Google Scholar 

  25. James SR, Downes CP (1997) Structural and mechanistic features of phospholipases C: effectors of inositol phospholipid-mediated signal transduction. Cell Signal 9:329–336

    CAS  PubMed  Google Scholar 

  26. Lopez I, Mak EC, Ding J et al (2001) A novel bifunctional phospholipase C that is regulated by Gα12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 276:2758–2765

    CAS  PubMed  Google Scholar 

  27. Heredia Mdel P, Delgado C, Pereira L et al (2005) Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation. J Mol Cell Cardiol 38:205–212

    PubMed  Google Scholar 

  28. Balogh J, Wihlborg AK, Isackson H et al (2005) Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y11-like receptors. J Mol Cell Cardiol 39:223–230

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Yin G, Yan C, Berk BC (2003) Angiotensin II signaling pathways mediated by tyrosine kinases. Int J Biochem Cell Biol 35:780–783

    CAS  PubMed  Google Scholar 

  30. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335

    CAS  PubMed  Google Scholar 

  31. Song C, Hu CD, Masago M et al (2001) Regulation of a novel human phospholipase C, PLCε, through membrane targeting by Ras. J Biol Chem 276:2752–2757

    CAS  PubMed  Google Scholar 

  32. Saunders CM, Larman MG, Parrington J et al (2002) PLC ζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129:3533–3544

    CAS  PubMed  Google Scholar 

  33. Wing MR, Bourdon DM, Harden TK (2003) PLC-ε: a shared effector protein in Ras-, Rho-, and G αβγ-mediated signaling. Mol Interv 3:273–280

    CAS  PubMed  Google Scholar 

  34. Hwang JI, Oh YS, Shin KJ et al (2005) Molecular cloning and characterization of a novel phospholipase C, PLC-η. Biochem J 389:181–186

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Tappia PS, Liu S-Y, Shatadal S et al (1999) Changes in sarcolemmal PLC isoenzymes in postinfarct congestive heart failure: partial correction by imidapril. Am J Physiol Heart Circ Physiol 277:H40–H49

    CAS  Google Scholar 

  36. Wolf RA (1992) Association of phospholipase C-δ with a highly enriched preparation of canine sarcolemma. Am J Physiol Cell Physiol 263:C1021–C1028

    CAS  Google Scholar 

  37. Wang H, Oestreich EA, Maekawa N et al (2005) Phospholipase C ε modulates β-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ Res 97:1305–1313

    CAS  PubMed  Google Scholar 

  38. Asemu G, Dhalla NS, Tappia PS (2004) Inhibition of PLC improves postischemic recovery in isolated rat heart. Am J Physiol Heart Circ Physiol 287:H2598–H2605

    CAS  PubMed  Google Scholar 

  39. Newton AC, Johnson JE (1998) Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta 1376:155–172

    CAS  PubMed  Google Scholar 

  40. Malhotra A, Kang BP, Opawumi D et al (2001) Molecular biology of protein kinase C signaling in cardiac myocytes. Mol Cell Biochem 225:97–107

    CAS  PubMed  Google Scholar 

  41. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87:1095–1102

    CAS  PubMed  Google Scholar 

  42. Churchill E, Budas G, Vallentin A et al (2008) PKC isozymes in chronic cardiac disease: possible therapeutic targets? Annu Rev Pharmacol Toxicol 48:569–599

    CAS  PubMed  Google Scholar 

  43. Dorn GW II, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Sabri A, Steinberg SF (2003) Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem 251:97–101

    CAS  PubMed  Google Scholar 

  45. Kockskämper J, Zima AV, Roderick HL et al (2008) Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 45:128–147

    PubMed Central  PubMed  Google Scholar 

  46. Vasilevski O, Grubb DR, Filtz TM et al (2008) Ins(1,4,5)P3 regulates phospholipase C β1 expression in cardiomyocytes. J Mol Cell Cardiol 45:679–684

    CAS  PubMed  Google Scholar 

  47. Wu X, Zhang T, Bossuyt J et al (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    CAS  PubMed  Google Scholar 

  49. Mackenzie L, Bootman MD, Laine M et al (2004) The role of inositol 1,4,5-trisphosphate receptors in Ca2+ signaling and the generation of arrhythmias in rat atrial myocytes. J Physiol 555:395–409

    Google Scholar 

  50. Zima AV, Blatter LA (2004) Inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol 555:607–615

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Ruiz-Hurtado G, Morel E, Dominguez-Rodriguez A et al (2013) Epac in cardiac calcium signaling. J Mol Cell Cardiol 58:162–171

    CAS  PubMed  Google Scholar 

  52. Pereira L, Ruiz-Hurtado G, Morel E et al (2012) Epac enhances excitation-transcription coupling in cardiac myocytes. J Mol Cell Cardiol 52:283–291

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Lin F, Owens WA, Chen S et al (2001) Targeted α1B-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 89:343–350

    CAS  PubMed  Google Scholar 

  54. Milano CA, Dolber PC, Rockman HA et al (1994) Myocardial expression of a constitutively active 1β-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci U S A 91:10109–10113

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Arthur JF, Matkovich SJ, Mitchell CJ et al (2001) Evidence for selective coupling of α1-adrenergic receptors to phospholipase C-β1 in rat neonatal cardiomyocytes. J Biol Chem 276:37341–37346

    CAS  PubMed  Google Scholar 

  56. Grubb DR, Vasilevski O, Huynh H, Woodcock EA (2008) The extreme C-terminal region of phospholipase C β1 determines subcellular localization and function; the “b” splice variant mediates α1-adrenergic receptor responses in cardiomyocytes. FASEB J 22:2768–2774

    CAS  PubMed  Google Scholar 

  57. Kawaguchi H, Sano H, Iizuka K et al (1993) Phosphatidylinositol metabolism in hypertrophic rat heart. Circ Res 72:966–972

    CAS  PubMed  Google Scholar 

  58. Shoki M, Kawaguchi H, Okamoto H et al (1992) Phosphatidylinositol and inositolphosphatide metabolism in hypertrophied rat heart. Jpn Circ J 56:142–147

    CAS  PubMed  Google Scholar 

  59. Sakata Y (1993) Tissue factors contributing to cardiac hypertrophy in cardiomyopathic hamsters (BIO14.6): involvement of transforming growth factor-beta 1 and tissue renin-angiotensin system in the progression of cardiac hypertrophy. Hokkaido Igaku Zasshi 68:18–28

    CAS  PubMed  Google Scholar 

  60. Dent MR, Dhalla NS, Tappia PS (2004) Phospholipase C gene expression, protein content and activities in cardiac hypertrophy and heart failure due to volume overload. Am J Physiol Heart Circ Physiol 282:H719–H727

    Google Scholar 

  61. Dent MR, Aroutiounova N, Dhalla NS, Tappia PS (2006) Losartan attenuates phospholipase C isozyme gene expression in hypertrophied hearts due to volume overload. J Cell Mol Med 10:470–479

    CAS  PubMed  Google Scholar 

  62. Jalili T, Takeishi Y, Song G et al (1999) PKC translocation without changes in Gαq and PLC-β protein abundance in cardiac hypertrophy and failure. Am J Physiol Heart Circ Physiol 277:H2298–H2304

    CAS  Google Scholar 

  63. Bai H, Wu LL, Xing DQ, Liu J, Zhao YL (2004) Angiotensin II induced upregulation of Gαq/11, phospholipase C β3 and extracellular signal-regulated kinase 1/2 via angiotensin II type 1 receptor. Chin Med J 117:88–93

    CAS  PubMed  Google Scholar 

  64. Giles TD, Sander GE, Thomas MG, Quiroz AC (1986) α-adrenergic mechanisms in the pathophysiology of left ventricular heart failure—an analysis of their role in systolic and diastolic dysfunction. J Mol Cell Cardiol 18:33–43

    CAS  PubMed  Google Scholar 

  65. Prasad K, O’Neil CL, Bharadwaj B (1984) Effect of prolonged prazosin treatment on hemodynamic and biochemical changes in the dog heart due to chronic pressure overload. Jpn Heart J 25:461–476

    CAS  PubMed  Google Scholar 

  66. Motz W, Klepzig M, Strauer BE (1987) Regression of cardiac hypertrophy: experimental and clinical results. J Cardiovasc Pharmacol 10:S148–S152

    PubMed  Google Scholar 

  67. Zakynthinos E, Pierrutsakos CH, Daniil Z, Papadogiannis D (2005) Losartan controlled blood pressure and reduced left ventricular hypertrophy but did not alter arrhythmias in hypertensive men with preserved systolic function. Angiology 56:439–449

    CAS  PubMed  Google Scholar 

  68. Kanno Y, Kaneko K, Kaneko M et al (2004) Angiotensin receptor antagonist regresses left ventricular hypertrophy associated with diabetic nephropathy in dialysis patients. J Cardiovasc Pharmacol 43:380–386

    CAS  PubMed  Google Scholar 

  69. Ruzicka M, Yuan B, Leenen FH (1994) Effects of enalapril versus losartan on regression of volume overload-induced cardiac hypertrophy in rats. Circulation 90:484–491

    CAS  PubMed  Google Scholar 

  70. Rothermund L, Vetter R, Dieterich M et al (2002) Endothelin-A receptor blockade prevents left ventricular hypertrophy and dysfunction in salt-sensitive experimental hypertension. Circulation 106:2305–2308

    CAS  PubMed  Google Scholar 

  71. Yamamoto K, Masuyama T, Sakata Y et al (2002) Prevention of diastolic heart failure by endothelin type A receptor antagonist through inhibition of ventricular structural remodeling in hypertensive heart. J Hypertens 20:753–761

    PubMed  Google Scholar 

  72. Lund AK, Goens MB, Nunez BA, Walker MK (2006) Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice. Toxicol Appl Pharmacol 212:127–135

    CAS  PubMed  Google Scholar 

  73. Ruwhof C, van Wamel JT, Noordzij LA et al (2001) Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal cardiomyocytes. Cell Calcium 29:73–83

    CAS  PubMed  Google Scholar 

  74. Barac YD, Zeevi-Levin N, Yaniv G et al (2005) The 1,4,5-inositol trisphosphate pathway is a key component in Fas-mediated hypertrophy in neonatal rat ventricular myocytes. Cardiovasc Res 68:75–86

    CAS  PubMed  Google Scholar 

  75. D’Angelo DD, Sakata Y, Lorenz JN et al (1997) Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A 94:8121–8126

    PubMed Central  PubMed  Google Scholar 

  76. Sakata Y, Hoit BD, Liggett SB et al (1998) Decompensation of pressure-overload hypertrophy in Gαq-overexpressing mice. Circulation 97:1488–1495

    CAS  PubMed  Google Scholar 

  77. Adams JW, Sakata Y, Davis MG et al (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci U S A 95:10140–10145

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Sussman MA, Welch S, Walker A et al (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 105:875–886

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M (2000) Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A 97:931–936

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Mende U, Kagen A, Cohen A et al (1998) Transient cardiac expression of constitutively active Gαq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci U S A 95:13893–13898

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Mende U, Kagen A, Meister M, Neer EJ (1999) Signal transduction in atria and ventricles of mice with transient cardiac expression of activated G protein alpha(q). Circ Res 85:1085–1091

    CAS  PubMed  Google Scholar 

  82. Mende U, Semsarian C, Martins DC et al (2001) Dilated cardiomyopathy in two transgenic mouse lines expressing activated G protein αq: lack of correlation between phospholipase C activation and the phenotype. J Mol Cell Cardiol 33:1477–1491

    CAS  PubMed  Google Scholar 

  83. Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559

    CAS  PubMed  Google Scholar 

  84. Anger T, Zhang W, Mende U (2004) Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo. J Biol Chem 279:3906–3915

    CAS  PubMed  Google Scholar 

  85. Zhang W, Anger T, Su J et al (2006) Selective loss of fine tuning of Gq/11 signaling by RGS2 protein exacerbates cardiomyocyte hypertrophy. J Biol Chem 281:5811–5820

    CAS  PubMed  Google Scholar 

  86. Park-Windhol C, Zhang P, Zhu M et al (2012) Gq/11-mediated signaling and hypertrophy in mice with cardiac-specific transgenic expression of regulator of G-protein signaling 2. PLoS One 7:e40048

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Dhalla NS, Xu Y-J, Sheu S-S et al (1997) Phosphatidic acid: a potential signal transducer for cardiac hypertrophy. J Mol Cell Cardiol 29:2865–2871

    CAS  PubMed  Google Scholar 

  88. Zhang L, Malik S, Kelley GG et al (2011) Phospholipase C epsilon scaffolds to muscle-specific A kinase anchoring protein (mAKAPbeta) and integrates multiple hypertrophic stimuli in cardiac myocytes. J Biol Chem 286:23012–23021

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Zhang L, Malik S, Pang J et al (2013) Phospholipase Cε hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell 153:216–227

    CAS  PubMed  Google Scholar 

  90. Small K, Feng JF, Lorenz J et al (1999) Cardiac specific overexpression of transglutaminase II (Gh) results in a unique hypertrophy phenotype independent of phospholipase C activation. J Biol Chem 23:21291–21296

    Google Scholar 

  91. Morris JB, Huynh H, Vasilevski O, Woodcock EA (2006) α1-Adrenergic receptor signaling is localized to caveolae in neonatal rat cardiomyocytes. J Mol Cell Cardiol 41:117–125

    Google Scholar 

  92. Barka T, van der Noen H, Shaw PA (1987) Proto-oncogene fos (c-fos) expression in the heart. Oncogene 1:439–443

    CAS  PubMed  Google Scholar 

  93. Hannan RD, West AK (1991) Adrenergic agents, but not triiodo-L-thyronine induce c-fos and c-myc expression in the rat heart. Basic Res Cardiol 86:154–164

    CAS  PubMed  Google Scholar 

  94. Iwaki K, Sukhatme VP, Shubeita HE, Chien KR (1990) α- and β-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an α1-mediated response. J Biol Chem 265:13809–13817

    CAS  PubMed  Google Scholar 

  95. Komuro I, Kaida T, Shibazaki Y et al (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598

    CAS  PubMed  Google Scholar 

  96. Gutkind JS (1998) The pathway connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273:1839–1842

    CAS  PubMed  Google Scholar 

  97. Chiu R, Boyle WJ, Meek J et al (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54:541–552

    CAS  PubMed  Google Scholar 

  98. Lijnen P, Petrov V (1999) Antagonism of the renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. Methods Find Exp Clin Pharmacol 21:363–374

    CAS  PubMed  Google Scholar 

  99. Singal T, Dhalla NS, Tappia PS (2010) Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes. J Cell Mol Med 14:1824–1835

    CAS  PubMed  Google Scholar 

  100. Singal T, Dhalla NS, Tappia PS (2009) Regulation of c-Fos and c-Jun gene expression by phospholipase C activity in adult cardiomyocytes. Mol Cell Biochem 327:229–239

    CAS  PubMed  Google Scholar 

  101. Otaegui D, Querejeta R, Arrieta A et al (2010) Phospholipase Cβ4 isozyme is expressed in human, rat and murine heart left ventricles and HL-1 cardiomyocytes. Mol Cell Biochem 337:167–173

    CAS  PubMed  Google Scholar 

  102. Strauer BE, Bayer F, Brecht HM, Motz W (1985) The influence of sympathetic nervous activity on regression of cardiac hypertrophy. J Hypertens 3:S39–S44

    CAS  Google Scholar 

  103. Strauer BE (1995) Progression and regression of heart hypertrophy in arterial hypertension: pathophysiology and clinical aspects. Z Kardiol 74:171–178

    Google Scholar 

  104. Strauer BE (1988) Regression of myocardial and coronary vascular hypertrophy in hypertensive heart disease. J Cardiovasc Pharmacol 12:S45–S54

    PubMed  Google Scholar 

Download references

Acknowledgment

Infrastructural support was provided by the St. Boniface Hospital Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit S. Tappia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tappia, P.S., Dhalla, N.S. (2014). Activation of Phospholipase C in Cardiac Hypertrophy. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_18

Download citation

Publish with us

Policies and ethics