Skip to main content

Nanosized Materials in Amperometric Sensors

  • Chapter
  • First Online:
Environmental Analysis by Electrochemical Sensors and Biosensors

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2994 Accesses

Abstract

The use of nanosized materials nowadays constitutes one of the most diffused approaches to modify electrode surface when aiming at obtaining efficient amperometric sensors; quite spontaneously, this trend has also involved the field of environmental monitoring. The chapter aims at discussing the properties of nanosized materials, the most widespread strategies for their deposition on the electrode surface as well as the main advantages and limitations of their use in electroanalysis. Metal and carbon nanostructures, and the relevant composite materials, are particularly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perez-Lopez B, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    CAS  Google Scholar 

  2. Bigall NC, Parak WJ, Dorfs D (2012) Fluorescent, magnetic and plasmonic–hybrid multifunctional colloidal nano objects. Nano Today 7:282–296

    CAS  Google Scholar 

  3. Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264

    CAS  Google Scholar 

  4. Bera D, Qian L, Tseng TK, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials 3:2260–2345

    CAS  Google Scholar 

  5. Huang XJ, Choi YK (2007) Chemical sensors based on nanostructured materials. Sens Act B 122:659–671

    CAS  Google Scholar 

  6. Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surface. Marcel Dekker, New York, USA

    Google Scholar 

  7. Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172

    CAS  Google Scholar 

  8. Dey RS, Bera RK, Raj CR (2013) Nanomaterial-based functional scaffolds for amperometric sensing of bioanalytes. Anal Bioanal Chem 405:3431–3448

    CAS  Google Scholar 

  9. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. Trends Anal Chem 39:87–113

    CAS  Google Scholar 

  10. Su S, Wu W, Gao J, Lu J, Fan C (2012) Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem 22:18101–18110

    CAS  Google Scholar 

  11. Aragay G, Merkoçi A (2012) Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta 84:49–61

    CAS  Google Scholar 

  12. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    CAS  Google Scholar 

  13. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    CAS  Google Scholar 

  14. Marin S, Merkoçi A (2012) Nanomaterials based electrochemical sensing applications for safety and security. Electroanalysis 24:459–469

    CAS  Google Scholar 

  15. Aragay G, Pino F, Merkoci A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112:5317–5338

    CAS  Google Scholar 

  16. Zhang J, Li CM (2012) Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem Soc Rev 41:7016–7031

    CAS  Google Scholar 

  17. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44

    CAS  Google Scholar 

  18. Siangproh W, Dungchai W, Rattanarat P, Chailapakul O (2011) Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: a review. Anal Chim Acta 690:10–25

    CAS  Google Scholar 

  19. Rassaei L, Marken F, Sillanpaa M, Amiri M, Cirtiu CM, Sillanpaa M (2011) Nanoparticles in electrochemical sensors for environmental monitoring. Trends Anal Chem 30:1704–1715

    CAS  Google Scholar 

  20. Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259

    CAS  Google Scholar 

  21. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180

    CAS  Google Scholar 

  22. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lina Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    CAS  Google Scholar 

  23. Li H, Liu S, Dai Z, Bao J, Yang X (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547–8561

    CAS  Google Scholar 

  24. Xiao Y, Li CM (2008) Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalysis 20:648–662

    CAS  Google Scholar 

  25. Wang J, Lin Y (2008) Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Anal Chem 27:619–626

    Google Scholar 

  26. de la Escosura-Muñiz A, Ambrosi A, Merkoçi A (2008) Electrochemical analysis with nanoparticle-based biosystems. Trends Anal Chem 27:568–584

    Google Scholar 

  27. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    CAS  Google Scholar 

  28. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619

    CAS  Google Scholar 

  29. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    CAS  Google Scholar 

  30. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    CAS  Google Scholar 

  31. Merkoçi A, Aldavert M, Markín S, Alegret S (2005) New materials for electrochemical sensing V: nanoparticles for DNA labelling. Trends Anal Chem 24:341–349

    Google Scholar 

  32. Zen JM, Kumar AS, Tsai DM (2003) Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15:1073–1087

    CAS  Google Scholar 

  33. Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27:990–993

    CAS  Google Scholar 

  34. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22:1179–1201

    CAS  Google Scholar 

  35. Eftekhari A (2010) Nanostructured conductive polymers. Wiley, Chichester, UK

    Google Scholar 

  36. Yogeswaran U, Chen SM (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8:290–313

    CAS  Google Scholar 

  37. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18:533–550

    CAS  Google Scholar 

  38. Yacaman MY, Ascencio JA, Kiu HB, Gardea-Torresdey J (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol B 19:1091–1103

    CAS  Google Scholar 

  39. Chen J, Wiley BJ, Xia Y (2007) One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir 23:4120–4129

    CAS  Google Scholar 

  40. Yanez-Sedeno P, Riu J, Pingarron JM, Rius FX (2010) Electrochemical sensing based on carbon nanotubes. Trends Anal Chem 29:939–953

    CAS  Google Scholar 

  41. Pumera M (2012) Voltammetry of carbon nanotubes and graphenes: excitement, disappointment, and reality. Chem Rec 12:201–213

    CAS  Google Scholar 

  42. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    CAS  Google Scholar 

  43. Hernandez FJ, Ozalp VC (2012) Graphene and other nanomaterial-based electrochemical aptasensors. Biosensors 2:1–14

    CAS  Google Scholar 

  44. Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976

    CAS  Google Scholar 

  45. Artiles MS, Rout CS, Fisher TS (2011) Graphene-based hybrid materials and devices for biosensing. Adv Drug Deliv Rev 63:1352–1360

    CAS  Google Scholar 

  46. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2012) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648

    Google Scholar 

  47. Griese S, Kampouris DK, Kadara RO, Banks CE (2008) A critical review of the electrocatalysis reported at C60 modified electrodes. Electroanalysis 20:1507–1512

    CAS  Google Scholar 

  48. Zhang X, Cui Y, Lv X, Li M, Ma S, Cui Z, Kong Q (2011) Carbon nanotubes, conductive carbon black and graphite powder based paste electrodes. Int J Electrochem Sci 6:6063–6073

    CAS  Google Scholar 

  49. Charlier JC (2002) Defects in carbon nanotubes. Acc Chem Res 35:1063–1069

    CAS  Google Scholar 

  50. Collins PG (2009) In: Narlikar AV, Fu YY (eds) Oxford handbook of nanoscience and technology: frontiers and advances. Oxford University Press, Oxford

    Google Scholar 

  51. Tzirakis MSD, Orfanopoulos M (2013) Radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology. Chem Rev 113:5262–5321

    CAS  Google Scholar 

  52. Choudhary V, Gupta A (2011) In: Yellampalli S (ed) Polymer/carbon nanotube nanocomposites, carbon nanotubes – polymer nanocomposites. InTech, Rijeka

    Google Scholar 

  53. Harris PJF (2005) New perspectives on the structure of graphitic carbons. Crit Rev Solid State Mat Sci 30:235–253

    CAS  Google Scholar 

  54. Rahman MM, Saleh Ahammad AJ, Jin JH, Ahn SJ, Lee JJ (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–4886

    CAS  Google Scholar 

  55. Liu A (2008) Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Biosens Bioelectron 24:167–177

    CAS  Google Scholar 

  56. Bonnemann H, Richards RM (2001) Nanoscopic metal particles – synthetic methods and potential applications. Eur J Inorg Chem 2001:2455–2480

    Google Scholar 

  57. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    CAS  Google Scholar 

  58. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface 8:127–133

    CAS  Google Scholar 

  59. Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – a review. J Aerosol Sci 29:511–535

    CAS  Google Scholar 

  60. Hou PX, Liu C, Cheng HM (2008) Single-walled carbon nanotubes as anisotropic relaxation probes for magnetic resonance imaging. Carbon 46:2003–2025

    CAS  Google Scholar 

  61. Mao S, Pu H, Chen J (2012) Graphene oxide and its reduction: modeling and experimental progress. RSC Adv 2:2643–2662

    CAS  Google Scholar 

  62. Compton C, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    CAS  Google Scholar 

  63. Pashley R, Karaman M (2004) Applied colloid and surface chemistry. Wiley, Berlin

    Google Scholar 

  64. Schmid G (2004) Nanoparticles – from theory to application. Wiley-VCH, Weinheim

    Google Scholar 

  65. Duncan S (1992) Introduction to colloid and surface chemistry. Butterworth-Heinemann, Oxford

    Google Scholar 

  66. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778

    CAS  Google Scholar 

  67. Aiken JD III, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Cat A 145:1–44

    CAS  Google Scholar 

  68. Zanardi C, Terzi F, Zanfrognini B, Pigani L, Seeber R, Lukkari J, Ääritalo T (2010) Composite electrode coatings in amperometric sensors. Effects of differently encapsulated gold nanoparticles in poly(3,4-ethylendioxythiophene) system. Sens Act B 144:92–98

    CAS  Google Scholar 

  69. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 1994:801–802

    Google Scholar 

  70. Bayindir Z, Duchesne PN, Cook SC, MacDonald MA, Zhang P (2009) X-ray spectroscopy studies on the surface structural characteristics and electronic properties of platinum nanoparticles. J Chem Phys 131:244716

    CAS  Google Scholar 

  71. Kumar S, Gandhi KS, Kumar R (2007) Ind Eng Chem Res 46:3128–3136

    CAS  Google Scholar 

  72. Son SU, Jang Y, Yoon KY, Kang E, Hyeon T (2004) Nano Lett 4:1147–1151

    CAS  Google Scholar 

  73. De Leo M, Pereira FC, Moretto LM, Scopece P, Polizzi S, Ugo P (2007) Chem Mater 19:5955–5964

    Google Scholar 

  74. Schreiber F (2000) Structure and growth of self-assembling monolayers. Progr Surf Sci 65:151–256

    CAS  Google Scholar 

  75. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    CAS  Google Scholar 

  76. Haensch C, Hoeppener S, Schubert US (2010) Chemical modification of self-assembled silane based monolayers by surface reactions. Chem Soc Rev 39:2323–2334

    CAS  Google Scholar 

  77. Ma Z, Zaera F (2006) Organic chemistry on solid surfaces. Surf Sci Rep 61:229–281

    CAS  Google Scholar 

  78. Sullivan TP, Huck WTS (2003) Reactions on monolayers: organic synthesis in two dimensions. Eur J Org Chem 2003:17–29

    Google Scholar 

  79. Chechik V, Crooks RM, Stirling CJM (2000) Reactions and reactivity in self-assembled monolayers. Adv Mater 12:1161–1171

    CAS  Google Scholar 

  80. Barteau MA (1996) Organic reactions at well-defined oxide surfaces. Chem Rev 96:1413–1430

    CAS  Google Scholar 

  81. Mandler D, Kraus-Ophir S (2011) Self-assembled monolayers (SAMs) for electrochemical sensing. J Solid State Electrochem 15:1535–1558

    CAS  Google Scholar 

  82. Terzi F, Zanfrognini B, Zanardi C, Pigani L, Seeber R (2011) Poly(3,4-ethylenedioxythiophene)/Au-nanoparticles composite as electrode coating suitable for electrocatalytic oxidation. Electrochim Acta 56:3575–3579

    CAS  Google Scholar 

  83. Giannetto M, Mori G, Terzi F, Zanardi C, Seeber R (2011) Composite PEDOT/Au nanoparticles modified electrodes for determination of mercury at trace levels by anodic stripping voltammetry. Electroanalysis 23:456–462

    CAS  Google Scholar 

  84. Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376–1391

    CAS  Google Scholar 

  85. Anstaett P, Zheng Y, Thai T, Funston AM, Bach U, Gasser G (2013) Synthesis of stable peptide nucleic acid-modified gold nanoparticles and their assembly onto gold surfaces. Angew Chem Int Ed 52:4217–4220

    CAS  Google Scholar 

  86. Gao C, Guo Z, Liu JH, Huang XJ (2012) Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4:1948–1963

    CAS  Google Scholar 

  87. Song W, Li DW, Li JT, Li Y, Long YT (2011) Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles. Biosens Bioelectron 26:3181–3186

    CAS  Google Scholar 

  88. Jiang HL, Xu O (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21:13705–13725

    CAS  Google Scholar 

  89. Gómez-Romero P, Sanchez C (2004) Hybrid materials, functional applications. An introduction. In: Gómez-Romero P, Sanchez C (eds) Functional hybrid materials. Wiley-VCH, Weinheim

    Google Scholar 

  90. International Union of Pure and Applied Chemistry (2013) IUPAC goldbook. http://goldbook.iupac.org

  91. Wu B, Zheng N (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8:168–197

    Google Scholar 

  92. Chu H, Wei L, Cui R, Wang J, Li Y (2010) Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord Chem Rev 254:1117–1134

    CAS  Google Scholar 

  93. Kumar Vashist S, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29:169–188

    Google Scholar 

  94. Lu X, Zhang W, Wang C, Wen TC, Wei Y (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Progr Polym Sci 36:671–712

    CAS  Google Scholar 

  95. Gajendran P, Saraswathi R (2008) Polyaniline-carbon nanotube composites. Pure Appl Chem 80:2377–2395

    CAS  Google Scholar 

  96. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    CAS  Google Scholar 

  97. Zanardi C, Terzi F, Seeber R (2013) Polythiophenes and polythiophene-based composites in amperometric sensing. Anal Bioanal Chem 405:509–531

    CAS  Google Scholar 

  98. Janáky C, Visy C (2013) Conducting polymer-based hybrid assemblies for electrochemical sensing: a materials science perspective. Anal Bioanal Chem 405:3489–3511

    Google Scholar 

  99. Zanardi C, Terzi F, Pigani L, Seeber R (2011) Electrode coatings consisting of polythiophene-based composites containing metal centre. In: Lechkov M, Prandzheva S (eds) Encyclopedia of polymer composites: properties, performance and applications. Nova, New York

    Google Scholar 

  100. Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Google Scholar 

  101. Walther A, Muller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261

    CAS  Google Scholar 

  102. Terzi F, Zanardi C, Daolio S, Fabrizio M, Seeber R (2011) Au/Pt nanoparticle systems in methanol and carbon monoxide electroxidation. Electrochim Acta 56:3673–3678

    CAS  Google Scholar 

  103. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Metal nanoparticles and their assemblies. Chem Soc Rev 29:27–35

    CAS  Google Scholar 

  104. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  Google Scholar 

  105. Shipway A, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1:18–52

    CAS  Google Scholar 

  106. Fernandes de Farias R (2009) Chemistry on modified oxide and phosphate surfaces: fundamentals and applications. Academic, Amsterdam

    Google Scholar 

  107. Kuila BK, Garai A, Nandi AK (2007) Synthesis, optical, and electrical characterization of organically soluble silver nanoparticles and their poly(3-hexylthiophene) nanocomposites: enhanced luminescence property in the nanocomposite thin films. Chem Mater 19:5443–5452

    CAS  Google Scholar 

  108. Baibarac M, Batlog I, Lefrant S, Mavellec JY, Chauvet O (2003) Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chem Mater 15:4149–4156

    CAS  Google Scholar 

  109. Jena BK, Ray CR (2006) Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem Eur J 12:2702–2708

    CAS  Google Scholar 

  110. Zanardi C, Terzi F, Pigani L, Heras A, Colina A, Lopez-Palacios J, Seeber R (2008) Development and characterisation of a novel composite electrode material consisting of poly(3,4-ethylenedioxythiophene) including Au nanoparticles. Electrochim Acta 53:3916–3923

    CAS  Google Scholar 

  111. Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S (1999) Synthesis and properties of carbon nanotube-polypyrrole composites. Synth Metals 102:1266–1267

    CAS  Google Scholar 

  112. Zotti G, Vercelli B, Berlin A (2008) Gold nanoparticle linking to polypyrrole and polythiophene: monolayers and multilayers. Chem Mater 20:6509–6516

    CAS  Google Scholar 

  113. Kotov NA (2002) In: Decher G, Schlenoff JB (eds) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  114. Wang S, Li C, Chen F, Shi G (2007) Layer-by-layer deposited multilayer films of water soluble polythiophene derivative and gold nanoparticles exhibiting photoresponsive properties. Nanotechnology 18:185707(1)–185707(6)

    Google Scholar 

  115. Ruiz V, Nicholson PG, Jollands S, Thomas PA, Macpherson JV, Unwin PRJ (2005) Molecular ordering and 2D conductivity in ultrathin poly(3-hexylthiophene)/gold nanoparticle composite films. J Phys Chem B 109:19335–19344

    CAS  Google Scholar 

  116. Nicholson PG, Ruiz V, Macpherson JV, Unwin PR (2006) Effect of composition on the conductivity and morphology of poly(3-hexylthiophene)/gold nanoparticle composite Langmuir-Schaeffer films. Phys Chem Chem Phys 8:5096–5105

    CAS  Google Scholar 

  117. Kim BY, Cho MS, Kim YS, Son Y, Lee Y (2005) Fabrication and characterization of poly(3,4-ethylenedioxythiophene)/gold nanocomposite via in-situ redox cycle system. Synth Met 153:149–152

    CAS  Google Scholar 

  118. Panda BR, Chattopadhyay AJ (2007) A water-soluble polythiophene–Au nanoparticle composite for pH sensing. Colloid Interf Sci 316:962–967

    CAS  Google Scholar 

  119. Cho MS, Kim SY, Nam JD, Lee Y (2008) Preparation of PEDOT/Cu composite film by in situ redox reaction between EDOT and copper(II) chloride. Synth Met 158:865–869

    CAS  Google Scholar 

  120. Millan MD, Taranekar P, Waenkaew P, Advincula RC (2005) Formation of gold nanoparticles stabilized by a star block copolymer and simultaneous polymerization of a dithiophenylpyrrole monomer. Polymer Preprints 46:652–653

    CAS  Google Scholar 

  121. Zhitomirsky I (2002) Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv Coll Interf Sci 97:279–317

    CAS  Google Scholar 

  122. Maduraiveeran G, Ramaraj R (2007) A facile electrochemical sensor designed from gold nanoparticles embedded in three-dimensional sol-gel network for concurrent detection of toxic chemicals. Electrochem Commun 9:2051–2055

    CAS  Google Scholar 

  123. Burke LD (2004) Scope for new applications for gold arising from the electrocatalytic behaviour of its metastable surface states. Gold Bull 37:125–135

    CAS  Google Scholar 

  124. Xiao F, Liu L, Li J, Zeng J, Zeng B (2008) Electrocatalytic oxidation and voltammetric determination of nitrite on hydrophobic ionic liquid-carbon nanotube gel-chitosan composite modified electrodes. Electroanalysis 20:2047–2054

    CAS  Google Scholar 

  125. Xiao L, Wildgoose GG, Compton RG (2009) Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Anal Chim Acta 620:44–49

    Google Scholar 

  126. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193

    CAS  Google Scholar 

  127. Chicharro M, Bermejo E, Moreno M, Sanchez A, Zapardiel A, Rivas G (2005) Adsorptive stripping voltammetric determination of amitrole at a multi-wall carbon nanotubes paste electrode. Electroanalysis 17:476–482

    CAS  Google Scholar 

  128. Hrapovic S, Majid E, Liu Y, Male K, Luong JHT (2006) Metallic nanoparticle–carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem 78:5504–5512

    CAS  Google Scholar 

  129. Jena BK, Raj CR (2008) Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury and copper. Anal Chem 80:4836–4844

    CAS  Google Scholar 

  130. Zhu Z, Su Y, Li J, Li D, Zhang J, Song S, Zhao Y, Li G, Fan C (2009) Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem 81:7660–7666

    CAS  Google Scholar 

  131. Pedrero M, Campuzano S, Pingarrón JM (2011) Magnetic beads-based electrochemical sensors applied to the detection and quantification of bioterrorism/biohazard agents. Electroanalysis 24:470–482

    Google Scholar 

  132. Cederquist KB, Keating CD (2009) Curvature effects in DNA: Au nanoparticle conjugates. ACSNano 3:256–260

    CAS  Google Scholar 

  133. Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACSNano 3:418–424

    CAS  Google Scholar 

  134. Zanardi C, Baldoli C, Licandro E, Terzi F, Seeber R (2012) Development of a gold-nanostructured surface for amperometric genosensors. J Nanopart Res 14:1148–1159

    Google Scholar 

  135. Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641

    Google Scholar 

  136. Holze R (2009) Surface and interface analysis – an electrochemists toolbox, vol 74, Springer series in chemical physics. Springer, Berlin

    Google Scholar 

  137. Terzi F, Pasquali L, Seeber R (2013) Studies of the interface of conducting polymers with inorganic surfaces. Anal Bioanal Chem 405:1513–1535

    CAS  Google Scholar 

  138. Alkire RC, Kolb DM, Lipkowski J, Ross PN (2008) Diffraction and spectroscopic methods in electrochemistry, advances in electrochemical science and engineering, vol 4. Wiley-VCH, Weinheim

    Google Scholar 

  139. Innocenti M, Loglio F, Pigani L, Seeber R, Terzi F, Udisti R (2005) In situ atomic force microscopy in the study of electrogeneration of polybithiophene on Pt electrode. Electrochim Acta 50:1497–1503

    CAS  Google Scholar 

  140. Streeter I, Compton RG (2007) Diffusion-limited currents to nanoparticles of various shapes supported on an electrode; Spheres, hemispheres, and distorted spheres and hemispheres. J Phys Chem C 111:18049–18054

    CAS  Google Scholar 

  141. Hammer B, Noeskov JK (2000) In: Gates BC, Knozinger H (eds) Advances in catalysis, vol 45. Elsevier, New York

    Google Scholar 

  142. Mustera TH, Trinchi A, Markleya TA, Lau D, Martin P, Bradbury A, Bendavid A, Dligatch S (2011) A review of high throughput and combinatorial electrochemistry. Electrochim Acta 56:9679–9699

    Google Scholar 

  143. Wang GL, Xu JJ, Chen HY (2009) Progress in the studies of photoelectrochemical sensors. Sci China Ser B Chem 52:1789–1800

    CAS  Google Scholar 

  144. Farrell ST, Breslin CB (2004) Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim Acta 49:4497–4503

    CAS  Google Scholar 

  145. Cutress IJ, Marken F, Compton RG (2009) Microwave-assisted electroanalysis: a review. Electroanalysis 21:113–123

    CAS  Google Scholar 

  146. Banks CE, Compton RG (2003) Ultrasonically enhanced voltammetric analysis and applications: an overview. Electroanalysis 15:329–346

    CAS  Google Scholar 

  147. Compton RG, Eklund JC, Marken F (1997) Sonoelectrochemical processes: a review. Electroanalysis 9:509–522

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Zanardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terzi, F., Zanardi, C. (2014). Nanosized Materials in Amperometric Sensors. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0676-5_17

Download citation

Publish with us

Policies and ethics