Skip to main content

Dietary Antioxidants and Chromatin Modifying Compounds as Potential Anti-cancer Therapies

  • Chapter
  • First Online:
Molecular mechanisms and physiology of disease

Abstract

Despite the efficacy of novel chemotherapeutic agents and radiation therapy, considerable developments are still necessary to improve the tolerance and reduce the toxicity in healthy cells of cancer patients. Dietary polyphenols have received increasing interest as an alternative approach, particularly in cancer treatment, as they display strong antioxidant properties and reduced toxicity profiles in normal cells. For decades, the Mediterranean diet but particularly olive oil has been linked with increased health benefits and has been associated with decreased risks in cardiovascular diseases and cancers. The minor constituents of olives are its phenolic compounds including oleuropein, tyrosol, hydroxytyrosol and homovanillic alcohol. These main phenolic compounds all possess antioxidant activity, with particular potency exhibited in hydroxytyrosol (HT). An imbalance of reactive oxygen species cause oxidative stress that can damage cells, and consequently lead to the formation of cancer or various diseases. Here, we provide evidence for the dietary antioxidant and polyphenolic compound hydroxytyrosol for its potential application as both a chemopreventive and anti-cancer agent for the treatment of haematological and solid malignancies.

Aberrant gene expression caused by histone acetylation has also been associated with cancer and represents a potentially useful therapeutic target for dietary compounds. The use of histone deacetylase inhibitors derived naturally from the diet, such as butyrate, dially disulphide and sulforaphane, in the inhibition of carcinogenesis has been supported by numerous studies. Similarly probiotics have been reported to have positive health effects. We describe the underlying mechanisms and discuss the possible limitations and benefits of using dietary antioxidants and chromatin modifying compounds as potential anti-cancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

ADR:

Adriamycin

ARE:

Antioxidant response element

DADS:

Dially disulfide

DNA:

Deoxyribonucleic acid

H2O2 :

Hydrogen peroxide

HDAC:

Histone deacetylases

HDACi:

Histone deacetylase inhibitor

HT:

Hydroxytyrosol

IEC:

Intestine epithelial

Keap1:

Kelch-like ECH-associating protein 1

LDL:

Low-density lipoprotein

MUFA:

Monosaturated fatty acids

NAD+:

Nicotinamide adenine dinucleotide

NO∙:

Nitric oxide

Nrf2:

Nuclear factor E2-related factor 2

O2 · − :

Superoxide anion radical

1O2 :

Singlet oxygen

· OH:

Hydroxyl radical

–OH:

Hydroxyl group

PUFA:

Polyunsaturated fatty acids

RNS:

Reactive nitrogen species

ROO:

Peroxyl radical

RT-PCR:

Real time-polymerase chain reaction

SAHA:

Suberoylanilide hydroxamic acid

SCFA:

Short chain fatty acid

SFN:

Sulforaphane

SFN-CYS:

Sulforaphane-cysteine

SFN-NAC:

Sulforaphane-N-acetylase

Sfrp4:

Secreted fizzled-related protein 4

Sir2:

Silent information regulator 2

SIRT:

Sirtuin

UV:

Ultra violet

References

  • Akilen R, Tsiami A, Devendra D, Robinson N (2012) Cinnamon in glycaemic control: systematic review and meta analysis. Clin Nutr 31:609–615

    Article  CAS  PubMed  Google Scholar 

  • Alarcón De La Lastra C, Barranco MD, Motilva V, Herrerías JM (2001) Mediterranean diet and health: biological importance of olive oil. Curr Pharm Des 7:933–950

    Article  PubMed  Google Scholar 

  • Aruoma OI (1994) Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol 32:671

    Article  CAS  PubMed  Google Scholar 

  • Assam El-Osta, Karagiannis TC (2010) Histone deacetylase inhibitors in medicine. Transworld Research Network, Kerala

    Google Scholar 

  • Berni Canani R, Di Costanzo M, Leone L, Bedogni G, Brambilla P, Cianfarani S, Nobili V, Pietrobelli A, Agostoni C (2011) Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev 24:198

    Article  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  CAS  PubMed  Google Scholar 

  • Boskou D (1996) In: Boskou D (ed) Olive oil: chemistry and technology. AOCS, Champaign, IL

    Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Kong A-NT (2005) Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci 26:318–326

    Article  PubMed  Google Scholar 

  • Cicerale S (2012) Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol 23:129–135

    Article  CAS  PubMed  Google Scholar 

  • Corona G, Deiana M, Incani A, Vauzour D, Dessi MA, Spencer JPE (2007) Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochem Biophys Res Commun 362:606–611

    Article  CAS  PubMed  Google Scholar 

  • Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184:1–16

    Article  CAS  PubMed  Google Scholar 

  • Dashwood RH, Myzak MC, Ho E (2006) Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention? Carcinogenesis 27:344–349

    Article  CAS  PubMed  Google Scholar 

  • Davis PA, Yokoyama W (2011) Cinnamon intake lowers fasting blood glucose: meta-analysis. J Med Food 14(9):884–889

    Article  CAS  PubMed  Google Scholar 

  • De La Puerta R, Dominguez MEM, Ruiz-Gutierrez V, Flavill JA, Hoult JRS (2001) Effects of virgin olive oil phenolics on scavenging of reactive nitrogen species and upon nitrergic neurotransmission. Life Sci 69:1213–1222

    Article  PubMed  Google Scholar 

  • Della Ragione F, Cucciolla V, Borriello A, Della Pietra V, Manna C, Galletti P, Zappia V (2000) Pyrrolidine dithiocarbamate induces apoptosis by a cytochrome c-dependent mechanism. Biochem Biophys Res Commun 268:942–946

    Article  CAS  PubMed  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    Article  CAS  PubMed  Google Scholar 

  • Doll R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191

    CAS  PubMed  Google Scholar 

  • Dye D (2009) Compound in broccoli may help protect against asthma and other respiratory diseases. Life Extension 15:18

    Google Scholar 

  • Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O’connor T, Harada T, Yamamoto M (2001) High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 59:169–177

    Article  CAS  PubMed  Google Scholar 

  • Fabiani R, Bartolomeo AD, Rosignoli P, Servili M, Selvaggini R, Montedoro GF, Saverio CD, Morozzi G (2006) Virgin olive oil phenols inhibit proliferation of human promyelocytic leukemia cells (HL6O) by inducing apoptosis and differentiation. J Nutr 136:614–619

    CAS  PubMed  Google Scholar 

  • Fabiani R, Rosignoli P, de Bartolomeo A, Fuccelli R, Servili M, Morozzi G (2011) The production of hydrogen peroxide is not a common mechanism by which olive oil phenols induce apoptosis on HL60 cells. Food Chem 125:1249–1255

    Article  CAS  Google Scholar 

  • Fernández Arroyo S (2012) Application of nanoLC-ESI-TOF-MS for the metabolomic analysis of phenolic compounds from extra-virgin olive oil in treated colon-cancer cells. J Pharm Biomed Anal 63:128–134

    Article  PubMed  Google Scholar 

  • Filomeni G, Aquilano K, Rotilio G, Ciriolo MR (2003) Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res 63:5940–5949

    CAS  PubMed  Google Scholar 

  • Fitó M (2005) Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis 181:149–158

    Article  PubMed  Google Scholar 

  • Fortes C, Garcia-Vilas JA, Quesada AR, Medina MA (2012) Evaluation of the anti-angiogenic potential of hydroxytyrosol and tyrosol, two bio-active phenolic compounds of extra virgin olive oil, in endothelial cell cultures. Food Chem 134:134–140

    Article  CAS  Google Scholar 

  • Fridovich I (1974) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 41:35–97

    CAS  PubMed  Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58:61–97

    CAS  PubMed  Google Scholar 

  • Gazzani G (2012) Functional foods and their expanding applications in the improvement of human health. Curr Opin Biotechnol 23:127–128

    Article  CAS  PubMed  Google Scholar 

  • Ghafourifar P, Sen CK (2007) Mitochondrial nitric oxide synthase. Front Biosci-Landmark 12:1072–1078

    Article  CAS  Google Scholar 

  • Gibbs A, Schwartzman J, Deng V, Alumkal J (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci U S A 106:16663–16668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill CIR, Boyd A, Mcdermott E, Mccann M, Servili M, Selvaggini R, Taticchi A, Esposto S, Montedoro G, Mcglynn H, Rowland I (2005) Potential anti-cancer effects of virgin olive oil phenols on colorectal carcinogenesis models in vitro. Int J Cancer 117:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gordon MH (2001) Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols. J Agric Food Chem 49:2480–2485

    Article  CAS  PubMed  Google Scholar 

  • Granados-Principal S (2010) Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev 68:191–206

    Article  PubMed  Google Scholar 

  • Granados-Principal S, Quiles JL, Ramirez-Tortosa C, Camacho-Corencia P, Sanchez-Rovira P, Vera-Ramirez L, Ramirez-Tortosa M (2011) Hydroxytyrosol inhibits growth and cell proliferation and promotes high expression of sfrp4 in rat mammary tumours. Mol Nutr Food Res 55:S117–S126

    Article  CAS  PubMed  Google Scholar 

  • Gulcin I (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391

    Article  PubMed  Google Scholar 

  • Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  • Ho E, Clarke JD, Dashwood RH (2009) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139:2393–2396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Incani A, Deiana M, Corona G, Vafeiadou K, Vauzour D, Dessì MA, Spencer JPE (2010) Involvement of ERK, Akt and JNK signalling in H2O2-induced cell injury and protection by hydroxytyrosol and its metabolite homovanillic alcohol. Mol Nutr Food Res 54:788–796

    Article  CAS  PubMed  Google Scholar 

  • Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS, WU CW (2000) Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem 275:20436–20443

    Article  CAS  PubMed  Google Scholar 

  • Keys A (1986) The diet and 15-year death rate in the seven countries study. Am J Epidemiol 124:903

    CAS  PubMed  Google Scholar 

  • Khymenets O (2011) Direct analysis of glucuronidated metabolites of main olive oil phenols in human urine after dietary consumption of virgin olive oil. Food Chem 126:306–314

    Article  CAS  Google Scholar 

  • Kleerebezem M, Vaughan EF (2009) Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate for proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar M, Nagpal R, Verma V, Kumar A, Kaur N, Hemalatha R, Gautam SK, Singh B (2013) Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr Rev 71:23–34

    Article  PubMed  Google Scholar 

  • Kwak M-K, Kensler TW (2010) Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 244:66–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyrtopoulos SA, Xenakis A, Sotiroudis GT, Sotiroudis TG (2003) Chemopreventative potential of minor components of olive oil against cancer. Italian J Food Sci 15:169

    Google Scholar 

  • Licciardi PV, Wong S-S, Tang ML, Karagiannis TC (2010) Epigenome targeting by probiotic metabolites. Gut Pathog 2:24–28

    Article  PubMed Central  PubMed  Google Scholar 

  • Malheiro R (2011) Cultivar effect on the phenolic composition and antioxidant potential of stoned table olives. Food Chem Toxicol 49:450–457

    Article  CAS  PubMed  Google Scholar 

  • Manna C, Galletti P, Maisto G, Cucciolla V, D’angelo S, Zappia V (2000) Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells. FEBS Lett 470:341–344

    Article  CAS  PubMed  Google Scholar 

  • Manson MM (2003) Cancer prevention—the potential for diet to modulate molecular signalling. Trends Mol Med 9:11–18

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mateos R, Pereira-Caro G, Saha S, Cert R, Redondo-Horcajo M, Bravo L, Kroon PA (2011) Acetylation of hydroxytyrosol enhances its transport across differentiated Caco-2 cell monolayers. Food Chem 125:865–872

    Article  CAS  Google Scholar 

  • McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem 279(30):31556–31567

    Article  CAS  PubMed  Google Scholar 

  • Miller CP, Singh MM, Rivera-Del Valle N, Manton CA, Chandra J (2011) Therapeutic strategies to enhance the anticancer efficacy of histone deacetylase inhibitors. J Biomed Biotechnol 2011:514261

    PubMed Central  PubMed  Google Scholar 

  • Myzak MC, Dashwood RH (2006) Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane. Curr Drug Targets 7:443–452

    Article  CAS  PubMed  Google Scholar 

  • Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Tsuta K, Kiuchi K, Senzaki H, Tanaka K, Hioki K, Tsubura A (2001) Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines. Carcinogenesis 22(6):891–897

    Article  CAS  PubMed  Google Scholar 

  • Noureen N, Rashid H, Kalsoom S (2010) Identification of type-specific anticancer histone deacetylase inhibitors: road to success. Cancer Chemother Pharmacol 66:625–633

    Article  CAS  PubMed  Google Scholar 

  • Omar SH (2010) Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm J 18:111–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Othman NB (2009) Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem 116:662–669

    Article  Google Scholar 

  • Park JH, Kim JW, Lee C-M, Kim YD, Chung SW, Jung ID, Noh KT, Park JW, Heo DR, Shin YK, Seo JK, Park Y-M (2012) Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma. BMB Rep 45:311–316

    Article  CAS  PubMed  Google Scholar 

  • Pledgie-Tracy A, Sobolewski MD, Davidson NE (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Rafehi H (2012) Investigation into the biological properties of the olive polyphenol, hydroxytyrosol: mechanistic insights by genome-wide mRNA-Seq analysis. Genes Nutr 7:343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raghavan A, Shah ZA (2012) Sirtuins in neurodegenerative diseases: a biological-chemical perspective. Neurodegener Dis 9:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Williams DE, Ho E, Dashwood RH (2011) Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 46:181–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramprasath VR, Jones PJH (2010) Anti-atherogenic effects of resveratrol. Eur J Clin Nutr 64:660–668

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L, Mccartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco M-J, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S63

    Article  CAS  PubMed  Google Scholar 

  • Santini V, Gozzini A, Ferrari G (2007) Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr Drug Metab 8:383–393

    Article  CAS  PubMed  Google Scholar 

  • Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26:5489–5504

    Article  CAS  PubMed  Google Scholar 

  • Schapira M (2011) Structural biology of human metal-dependent histone deacetylases. Handb Exp Pharmacol 206:225–240

    Article  CAS  PubMed  Google Scholar 

  • Seidel C (2012) Chromatin-modifying agents in anti-cancer therapy. Biochimie 94:2264

    Article  CAS  PubMed  Google Scholar 

  • Silva JP, Coutinho OP (2010) Free radicals in the regulation of damage and cell death—basic mechanisms and prevention. Drug Discov Ther 4:144–167

    CAS  PubMed  Google Scholar 

  • Simopoulos AP (2001) The Mediterranean diets: what is so special about the diet of Greece? The scientific evidence. J Nutr 131:3065S–3073S

    CAS  PubMed  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ, Luong C, Arvai A, Buggy JJ, Chi E, Tang J, Sang B-C, Verner E, Wynands R, Leahy EM, Dougan DR, Snell G, Navre M, Knuth MW, Swanson RV, Mcree DE, Tari LW (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure (London, England: 1993) 12:1325–1334

    Article  CAS  Google Scholar 

  • Song J-D, Lee SK, Kim KM, Park SE, Park S-J, Kim KH, Ahn SC, Park YC (2009) Molecular mechanism of diallyl disulfide in cell cycle arrest and apoptosis in HCT-116 colon cancer cells. J Biochem Mol Toxicol 23:71

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S, Grant S (2012) Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy. Oncogene 31:537–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stark AH, Madar Z (2002) Olive oil as a functional food: epidemiology and nutritional approaches. Nutr Rev 60:170

    Article  PubMed  Google Scholar 

  • Tho XP, Jiyoung L (2012) Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases. Nutrients 4:1868

    Article  Google Scholar 

  • Tome-Carneiro J, Gonzalvez M, Larrosa M, Yanez-Gascon MJ, Garcia-Almagro FJ, Ruiz-Ros JA, Garcia-Conesa MT, Tomas-Barberan FA, Espin JC (2012) One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am J Cardiol 110:356–363

    Article  CAS  PubMed  Google Scholar 

  • Trichopoulou A (2000) Cancer and Mediterranean dietary traditions. Cancer Epidemiol Biomarkers Prev 9:869

    CAS  PubMed  Google Scholar 

  • Trichopoulou A, Lagiou P (1997) Healthy traditional Mediterranean diet: an expression of culture, history, and lifestyle. Nutr Rev 55:383–389

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto Y, Kato J, Ikeda H (1997) Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388:900–903

    Article  CAS  PubMed  Google Scholar 

  • Tuck KL (2002) Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem 13:636

    Article  CAS  PubMed  Google Scholar 

  • Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17:3145–3156

    Article  CAS  PubMed  Google Scholar 

  • Visioli F, Bellosta S, Galli C (1998) Oleuropein, the bitter principle of olives, enhances nitric oxide production by mouse macrophages. Life Sci 62:541–546

    Article  CAS  PubMed  Google Scholar 

  • Visioli F, Poli A, Galli C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75

    Article  CAS  PubMed  Google Scholar 

  • Wargovich MJ (1997) Experimental evidence for cancer preventive elements in foods. Cancer Lett 114:11

    Article  CAS  PubMed  Google Scholar 

  • Warleta F, Quesada CS, Campos M, Allouche Y, Beltran G, Gaforio JJ (2011) Hydroxytyrosol protects against oxidative DNA damage in human breast cells. Nutrients 3:839–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinstein IB (1991) Cancer prevention: recent progress and future opportunities. Cancer Res 51:5080s–5085s

    CAS  PubMed  Google Scholar 

  • Wojcik M, Burzynska-Pedziwiatr I, Wozniak LA (2010) A review of natural and synthetic antioxidants important for health and longevity. Curr Med Chem 17:3262–3288

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Talalay P, Cho C-G, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 89(6):2399–2403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the Australian Institute of Nuclear Science and Engineering is acknowledged. TCK was the recipient of AINSE awards. TCK is a Future Fellow and Epigenomic Medicine Laboratory supported by the Australian Research Council. Also supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C. Karagiannis B.Sc. (Hons). Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazarakis, N., Karagiannis, T.C. (2014). Dietary Antioxidants and Chromatin Modifying Compounds as Potential Anti-cancer Therapies. In: Maulik, N., Karagiannis, T. (eds) Molecular mechanisms and physiology of disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0706-9_16

Download citation

Publish with us

Policies and ethics