Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Thermodynamic and fluid-dynamic processes in sound waves in gases can convert energy from one form to another. In these thermoacoustic processes [7.1,2], high-temperature heat or chemical energy can be partially converted to acoustic power, acoustic power can produce heat, acoustic power can pump heat from a low temperature or to a high temperature, and acoustic power can be partially converted to chemical potential in the separation of gas mixtures. In some cases, the thermoacoustic perspective brings new insights to decades-old technologies. Well-engineered thermoacoustic devices using extremely intense sound approach the power conversion per unit volume and the efficiency of mature energy-conversion equipment such as internal combustion engines, and the simplicity of few or no moving parts drives the development of practical applications.

This chapter surveys thermoacoustic energy conversion, so the reader can understand how thermoacoustic devices work and can estimate some relevant numbers. After a brief history, an initial section defines vocabulary and establishes preliminary concepts, and subsequent sections explain engines, dissipation, refrigeration, and mixture separation. Combustion thermoacoustics is mentioned only briefly. Transduction and measurement systems that use heat-generated surface and bulk acoustic waves in solids are not discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating current

References

  1. G.W. Swift: Thermoacoustics: A Unifying Perspective for some Engines and Refrigerators (Acoustical Society of America Publications, Sewickley PA 2002)

    Google Scholar 

  2. S.L. Garrett: Resource letter TA-1, Thermoacoustic engines and refrigerators, Am. J. Phys. 72, 11–17 (2004)

    Article  ADS  Google Scholar 

  3. N. Rott: Damped and thermally driven acoustic oscillations in wide and narrow tubes, Z. Angew. Math. Phys. 20, 230–243 (1969)

    Article  MATH  Google Scholar 

  4. N. Rott: Thermally driven acoustic oscillations, Part III: Second-order heat flux, Z. Angew. Math. Phys. 26, 43–49 (1975)

    Article  Google Scholar 

  5. T. Yazaki, A. Tominaga, Y. Narahara: Experiments on thermally driven acoustic oscillations of gaseous helium, J. Low Temp. Phys. 41, 45–60 (1980)

    Article  ADS  Google Scholar 

  6. J.W. Strutt (Baron Rayleigh): The explanation of certain acoustical phenomena, Nature 18, 319–321 (1878)

    Article  Google Scholar 

  7. K.T. Feldman: Review of the literature on Sondhauss thermoacoustic phenomena, J. Sound Vibrat. 7, 71–82 (1968)

    Article  ADS  Google Scholar 

  8. T. Hofler, J.C. Wheatley, G.W. Swift, A. Migliori: Acoustic cooling engine, US Patent 4722201 (1988)

    Google Scholar 

  9. T.J. Hofler: Thermoacoustic refrigerator design and performance. Ph.D. Thesis (University of California/Physics Department, San Diego 1986)

    Google Scholar 

  10. W.E. Gifford, R.C. Longsworth: Pulse tube refrigeration progress, Adv. Cryogenic Eng. B 10, 69–79 (1965)

    Google Scholar 

  11. E.L. Mikulin, A.A. Tarasov, M.P. Shkrebyonock: Low-temperature expansion pulse tubes, Adv. Cryogenic Eng. 29, 629–637 (1984)

    Article  Google Scholar 

  12. R. Radebaugh: Development of the pulse tube refrigerator as an efficient and reliable cryocooler, Proc. Inst. Refrigeration (London 2000) pp. 11–29

    Google Scholar 

  13. G. Walker: Stirling Engines (Clarendon, Oxford 1960)

    Google Scholar 

  14. P.H. Ceperley: A pistonless Stirling engine – The traveling wave heat engine, J. Acoust. Soc. Am. 66, 1508–1513 (1979)

    Article  ADS  Google Scholar 

  15. P.H. Ceperley: Gain and efficiency of a short traveling wave heat engine, J. Acoust. Soc. Am. 77, 1239–1244 (1985)

    Article  ADS  Google Scholar 

  16. T. Yazaki, A. Iwata, T. Maekawa, A. Tominaga: Traveling wave thermoacoustic engine in a looped tube, Phys. Rev. Lett. 81, 3128–3131 (1998)

    Article  ADS  Google Scholar 

  17. C.M. de Blok: Thermoacoustic system, Dutch Patent: International Application Number PCT/NL98/00515 (1998)

    Google Scholar 

  18. C.M. de Blok: Thermoacoustic system, US Patent 6314740 (2001)

    Google Scholar 

  19. S. Backhaus, G.W. Swift: A thermoacoustic-Stirling heat engine, Nature 399, 335–338 (1999)

    Article  ADS  Google Scholar 

  20. D. Gedeon: A globally implicit Stirling cycle simulation, Proc. 21st Intersociety Energy Conversion Eng. Conf. (Am. Chem. Soc., Washington 1986) pp. 550–554, Software available from Gedeon Associates, Athens, Ohio

    Google Scholar 

  21. W.C. Ward, G.W. Swift: Design environment for low amplitude thermoacoustic engines (DeltaE), J. Acoust. Soc. Am. 95, 3671–3672 (1994), Software and userʼs guide available from the Los Alamos thermoacoustics web site www.lanl.gov/thermoacoustics/, accessed 1 May 2014

    Article  ADS  Google Scholar 

  22. R.E. Sonntag, C. Borgnakke, G.J. Van Wylen: Fundamentals of Thermodynamics (Wiley, New York 2003)

    Google Scholar 

  23. F.W. Giacobbe: Estimation of Prandtl numbers in binary mixtures of helium and other noble gases, J. Acoust. Soc. Am. 96, 3568–3580 (1994)

    Article  ADS  Google Scholar 

  24. A. Bejan: Advanced Engineering Thermodynamics, 2nd edn. (Wiley, New York 1997)

    Google Scholar 

  25. S.L. Garrett: Acoustic Laser Kit, Graduate Program in Acoustics, P. O. Box 30, State College, PA 16804-0030 (www.acs.psu.edu/thermoacoustics/refrigeration/laserdemo.htm), accessed 1 May 2014

    Google Scholar 

  26. G.W. Swift, J.J. Wollan: Thermoacoustics for liquefaction of natural gas, GasTIPS 8(4), 21–26 (2002), Also available at www.lanl.gov/thermoacoustics/Pubs/GasTIPS.pdf, accessed 1 May 2014

    Google Scholar 

  27. D.L. Gardner, G.W. Swift: A cascade thermoacoustic engine, J. Acoust. Soc. Am. 114, 1905–1919 (2003)

    Article  ADS  Google Scholar 

  28. R.S. Wakeland, R.M. Keolian: Thermoacoustics with idealized heat exchangers and no stack, J. Acoust. Soc. Am. 111, 2654–2664 (2002)

    Article  ADS  Google Scholar 

  29. K.T. Feldman: Review of the literature on Rijke thermoacoustic phenomena, J. Sound Vibrat. 7, 83–89 (1968)

    Article  ADS  Google Scholar 

  30. I. Urieli, D.M. Berchowitz: Stirling Cycle Engine Analysis (Adam Hilger, Bristol 1984)

    Google Scholar 

  31. A.J. Organ: Thermodynamics and Gas Dynamics of the Stirling Cycle Machine (Cambridge Univ. Press, Cambridge 1992)

    Google Scholar 

  32. H. Nilsson, C. Bratt: Test results from a 15 kW air-independent Stirling power generator, Proc. 6th International Symposium on Unmanned Untethered Submersible Technology (IEEE, 1989) pp. 123–128

    Google Scholar 

  33. WhisperGen Limited, Christchurch, New Zealand

    Google Scholar 

  34. S. Qiu, D.L. Redinger, J.E. Augenblick: The next generation infinia free-piston Stirling engine for micro-CHP applications, Proc. 12th International Stirling Engine Conference (Durham University, 2005) pp. 156–165

    Google Scholar 

  35. M.A. White: A new paradigm for high-power Stirling applications. In: Proc. Space Nuclear Conference (Stirling Technology Company, Kennewick 2005)

    Google Scholar 

  36. B. Arman, J. Wollan, V. Kotsubo, S. Backhaus, G. Swift: Operation of thermoacoustic Stirling heat engine driven large multiple pulse tube refrigerators. In: Cryocoolers 13, ed. by R.G. Ross (Springer, Berlin, New York 2005) pp. 181–188

    Google Scholar 

  37. S. Backhaus, E. Tward, M. Petach: Traveling-wave thermoacoustic electric generator, Appl. Phys. Lett. 85, 1085–1087 (2004)

    Article  ADS  Google Scholar 

  38. B. Zinn: Pulsating combustion. In: Advanced Combustion Methods, ed. by F.J. Weinberg (Academic, London 1986) pp. 113–181

    Google Scholar 

  39. F.E.C. Culick: Combustion instabilities and Rayleighʼs criterion. In: Modern Research Topics in Aerospace Propulsion, ed. by C. Casci, G. Angelino, L. DeLuca, W.A. Sirignano (Springer, Berlin, New York 1991) pp. 508–517, in honor of Corrado Casci

    Google Scholar 

  40. M.E.H. Tijani, J.C.H. Zeegers, A.T.A.M. deWaele: The optimal stack spacing for thermoacoustic refrigeration, J. Acoust. Soc. Am. 112, 128–133 (2002)

    Article  ADS  Google Scholar 

  41. G. Walker: Cryocoolers (Plenum, New York 1983)

    Book  Google Scholar 

  42. N.W. Lane: Commercialization status of free-piston Stirling machines, Proc. 12th International Stirling Engine Conference (Durham University, 2005) pp. 30–37

    Google Scholar 

  43. E. Tward, C.K. Chan, C. Jaco, J. Godden, J. Chapsky, P. Clancy: Miniature space pulse tube cryocoolers, Cryogenics 39, 717–720 (1999)

    Article  ADS  Google Scholar 

  44. R.W.M. Smith, M.E. Poese, S.L. Garrett, R.S. Wakeland: Thermoacoustic device, US Patent 6725670 (2004)

    Google Scholar 

  45. M.E. Poese, R.W.M. Smith, R.S. Wakeland, S.L. Garrett: Bellows bounce thermoacoustic device, US Patent 6792764 (2004)

    Google Scholar 

  46. S.L. Garret: Pennsylvania State University, private communication

    Google Scholar 

  47. G.W. Swift, D.L. Gardner, S. Backhaus: Acoustic recovery of lost power in pulse tube refrigerators, J. Acoust. Soc. Am. 105, 711–724 (1999)

    Article  ADS  Google Scholar 

  48. D.A. Geller, G.W. Swift: Saturation of thermoacoustic mixture separation, J. Acoust. Soc. Am. 111, 1675–1684 (2002)

    Article  ADS  Google Scholar 

  49. P.S. Spoor, G.W. Swift: Thermoacoustic separation of a He-Ar mixture, Phys. Rev. Lett. 85, 1646–1649 (2000)

    Article  ADS  Google Scholar 

  50. D.A. Geller, G.W. Swift: Thermodynamic efficiency of thermoacoustic mixture separation, J. Acoust. Soc. Am. 112, 504–510 (2002)

    Article  ADS  Google Scholar 

  51. D.A. Geller, G.W. Swift: Thermoacoustic enrichment of the isotopes of neon, J. Acoust. Soc. Am. 115, 2059–2070 ()

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory W. Swift .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Swift, G.W. (2014). Thermoacoustics. In: Rossing, T.D. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0755-7_7

Download citation

Publish with us

Policies and ethics