Skip to main content

Computers in Intensive Care

  • Chapter
  • First Online:
The Organization of Critical Care

Part of the book series: Respiratory Medicine ((RM,volume 18))

Abstract

The intensive care unit is a data-rich environment where the physician may have difficulty accessing and processing the large amount of data generated by each patient. Incomplete access to all clinical information can result in suboptimal clinical decision making. A computerized clinical information systems (CIS) can enhance ICU management in a number of ways. These include the provision of complete but appropriately filtered information at the bedside, reduction in drug errors and the use of intelligent alarms for the early identification of deteriorating patients. Electronic reminders can improve compliance with guidelines, and more sophisticated decision support systems may provide patient-specific management guidance. An easily accessible and usable interface with the CIS is essential, and various mobile and context-aware systems are being developed. Several barriers to implementation exist, including financial constraints and poor acceptance among clinicians for this cultural change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris AH. Computerized protocols and bedside decision support. Crit Care Clin. 1999;15:523–45.

    Article  CAS  PubMed  Google Scholar 

  2. Manor-Shulman O, Beyene J, Frndova H, et al. Quantifying the volume of documented clinical information in critical illness. J Crit Care. 2008;23:245–50.

    Article  PubMed  Google Scholar 

  3. Lapinsky SE, Holt D, Hallett D, Abdolell M, Adhikari NKJ. Survey of information technology use in Ontario intensive care units. BMC Med Inform Decis Mak. 2008;8:5.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bates DW, Gawande AA. Improving safety with information technology. N Engl J Med. 2003;348:2526–34.

    Article  PubMed  Google Scholar 

  5. Amarasingham R, Pronovost PJ, Diener-West M, et al. Measuring clinical information technology in the ICU setting: application in a quality improvement collaborative. J Am Med Inform Assoc. 2007;14:288–94.

    Article  PubMed Central  PubMed  Google Scholar 

  6. HIMSS Analytics: EMR adoption model. http://www.himssanalytics.org/home/index.aspx. Accessed 21 Apr 2014.

  7. Nelson NC. Downtime procedures for a clinical information system: a critical issue. J Crit Care. 2007;22(1):45–50.

    Article  PubMed  Google Scholar 

  8. Kohn LT, Corrigan JM, Donaldson MS, Committee on Quality of Health Care in America, Institute of Medicine, editors. To err is human: building a safer health system. Washington, DC: National Academy Press; 1999.

    Google Scholar 

  9. Varon J, Marik PE. Clinical information systems and the electronic medical record in the intensive care unit. Curr Opin Crit Care. 2002;8:616–24.

    Article  PubMed  Google Scholar 

  10. Strain JJ, Felciano RM, Seiver A, Acuff R, Fagan L. Optimizing physician access to surgical intensive care unit laboratory information through mobile computing. Proc AMIA Annu Fall Symp. 1996:812–6.

    Google Scholar 

  11. Duncan RG, Shabot MM. Secure remote access to a clinical data repository using a wireless personal digital assistant (PDA). Proc AMIA Symp. 2000:210–4.

    Google Scholar 

  12. Nanni M, Carnassale R, Napoli M, Campioni P, Marano P. Information systems in the management of the radiology department. Rays. 2003;28:63–72.

    PubMed  Google Scholar 

  13. Maslove DM, Rizk N, Lowe HJ. Computerized physician order entry in the critical care environment: a review of current literature. J Intensive Care Med. 2011;26:165–71.

    Article  PubMed  Google Scholar 

  14. Eslami S, de Keizer NF, Abu-Hanna A. The impact of computerized physician medication order entry in hospitalized patients – a systematic review. Int J Med Inform. 2008;77:365–76.

    Article  PubMed  Google Scholar 

  15. Ammenwerth E, Schnell-Inderst P, Machan C, Siebert U. The effect of electronic prescribing on medication errors and adverse drug events: a systematic review. J Am Med Inform Assoc. 2008;15:585–600.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Evans RS, Pestotnik SL, Classen DC, Clemmer TP, Weaver LK, Orme Jr JF, Lloyd JF, Burke JP. A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med. 1998;338:232–8.

    Article  CAS  PubMed  Google Scholar 

  17. Colpaert K, Claus B, Somers A, Vandewoude K, Robays H, Decruyenaere J. Impact of computerized physician order entry on medication prescription errors in the intensive care unit: a controlled cross-sectional trial. Crit Care. 2006;10:R21.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Koppel R. What do we know about medication errors made via a CPOE system versus those made via handwritten orders? Crit Care. 2005;9:427–8.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Koppel R, Metlay JP, Cohen A, Abaluck B, Localio AR, Kimmel SE, Strom BL. Role of computerized physician order entry systems in facilitating medication errors. JAMA. 2005;293:1197–203.

    Article  CAS  PubMed  Google Scholar 

  20. Shulman R, Singer M, Goldstone J, Bellingan G. Medication errors: a prospective cohort study of hand-written and computerised physician order entry in the intensive care unit. Crit Care. 2005;9:R516–21.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Connolly C. Cedars-Sinai Doctors cling to pen and paper. Washington Post, 21 March 2005. http://www.washingtonpost.com/wp-dyn/articles/A52384-2005Mar20.html.

  22. Shabot MM. Ten commandments for implementing clinical information systems. Proc (Bayl Univ Med Cent). 2004;17:265–9.

    Google Scholar 

  23. Ali NA, Mekhjian HS, Kuehn PL, Bentley TD, Kumar R, Ferketich AK, Hoffmann SP. Specificity of computerized physician order entry has a significant effect on the efficiency of workflow for critically ill patients. Crit Care Med. 2005;33:110–4.

    Article  PubMed  Google Scholar 

  24. Han YY, Carcillo JA, Venkataraman ST, Clark RS, Watson RS, Nguyen TC, Bayir H, Orr RA. Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics. 2005;116:1506–12.

    Article  PubMed  Google Scholar 

  25. Del Beccaro MA, Jeffries HE, Eisenberg MA, Harry ED. Computerized provider order entry implementation: no association with increased mortality rates in an intensive care unit. Pediatrics. 2006;118:290–5.

    Article  PubMed  Google Scholar 

  26. McKinley BA, Moore FA, Sailors RM, et al. Computerized decision support for mechanical ventilation of trauma induced ARDS: results of a randomized clinical trial. J Trauma. 2001;50:415–24.

    Article  CAS  PubMed  Google Scholar 

  27. Eslami S, de Keizer NF, Abu-Hanna A, de Jonge E, Schultz MJ. Effect of a clinical decision support system on adherence to a lower tidal volume mechanical ventilation strategy. J Crit Care. 2009;24:523–9.

    Article  PubMed  Google Scholar 

  28. Frankovich J, Longhurst CA, Sutherland SM. Evidence-based medicine in the EMR era. N Engl J Med. 2011;365:1758–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu X, Lord W. Using a context-aware medical application to address information needs for extubation decisions. AMIA Annu Symp Proc. 2005:1169.

    Google Scholar 

  30. Ahmed A, Chandra S, Herasevich V, Gajic O, Pickering BW. The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance. Crit Care Med. 2011;39:1626–34.

    Article  PubMed  Google Scholar 

  31. Morrison C, Jones M, Vuylsteke A. Electronic patient record use during ward rounds: a qualitative study of interaction between medical staff. Crit Care. 2008;12:R148.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Effken JA, Loeb RG, Kang Y, Lin ZC. Clinical information displays to improve ICU outcomes. Int J Med Inform. 2008;77:765–77.

    Article  PubMed  Google Scholar 

  33. Dosani M, Hunc K, Dumont GA, Dunsmuir D, Barralon P, Schwarz SK, Lim J, Ansermino JM. A vibro-tactile display for clinical monitoring: real-time evaluation. Anesth Analg. 2012;115:588–94.

    PubMed  Google Scholar 

  34. Liu D, Jenkins SA, Sanderson PM, Watson MO, Leane T, Kruys A, Russell WJ. Monitoring with head-mounted displays: performance and safety in a full-scale simulator and part-task trainer. Anesth Analg. 2009;109:1135–46.

    Article  PubMed  Google Scholar 

  35. Sanders D, Protti D. Data warehouses in healthcare: fundamental principles. ElectronicHealthcare. 2008;6(3):1–16.

    Google Scholar 

  36. Lieberman MI, Ricciardi TN, Masarie FE, Spackman KA. The use of SNOMED CT simplifies querying of a clinical data warehouse. AMIA Annu Symp Proc. 2003:910.

    Google Scholar 

  37. Eikel C, Delbanco S, John M. Eisenberg Patient Safety Awards. The Leapfrog Group for Patient Safety: rewarding higher standards. Jt Comm J Qual Saf. 2003;29:634–9

    Google Scholar 

  38. Bosman RJ, Rood E, Oudemans-van Straaten HM, et al. Intensive care information system reduces documentation time of the nurses after cardiothoracic surgery. Intensive Care Med. 2003;29:83–90.

    PubMed  Google Scholar 

  39. Saarinen K, Aho M. Does the implementation of a clinical information system decrease the time intensive care nurses spend on documentation of care? Acta Anaesthesiol Scand. 2005;49:62–5.

    Article  CAS  PubMed  Google Scholar 

  40. Orwat C, Graefe A, Faulwasser T. Towards pervasive computing in health care – a literature review. BMC Med Inform Decis Mak. 2008;8:26.

    Article  PubMed Central  PubMed  Google Scholar 

  41. August J, O’Donoghue J. Context-aware agents (the 6Ws architecture). In: Proceedings of the international conference on agents and artificial intelligence, 2009. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.158.1502&rep=rep1&type=pdf.

  42. Jandhyala S, Jhoney A, Jhoney A, Muppidi S, Nagaratnam N, Saxena A (inventors), IBM Corp (assignee), Context aware data protection. US Patent 20,110,296,430, 2011.

    Google Scholar 

  43. Baumgart DC. Personal digital assistants in health care: experienced clinicians in the palm of your hand? Lancet. 2005;366:1210–22.

    Article  PubMed  Google Scholar 

  44. Craft RL. Trends in technology and the future intensive care unit. Crit Care Med. 2001;29(Suppl):N151–8.

    Article  CAS  PubMed  Google Scholar 

  45. Adatia FA, Bedard PL. “Palm reading”: 1. Handheld hardware and operating systems. CMAJ. 2002;167:775–80.

    PubMed Central  PubMed  Google Scholar 

  46. Bergeron BP. Enterprise digital assistants: the progression of wireless clinical computing. J Med Pract Manage. 2002;17:229–33.

    PubMed  Google Scholar 

  47. Raths D. The BYOD revolution. Healthc Inform. 2012;29:28. 30.

    Article  PubMed  Google Scholar 

  48. Anonymous. Ottawa Hospital surges ahead on wireless waves. Canadian Healthcare Technology, April 2012. http://www.canhealth.com/apr12.html#12aprstory1.

  49. Shaw CI, Kacmarek RM, Hampton RL, et al. Cellular phone interference with the operation of mechanical ventilators. Crit Care Med. 2004;32:928–31.

    Article  PubMed  Google Scholar 

  50. Lapinsky SE, Easty AC. Electromagnetic interference in critical care. J Crit Care. 2006;21:267–70.

    Article  PubMed  Google Scholar 

  51. Ammenwerth E, Buchauer A, Bludau B, Haux R. Mobile information and communication tools in the hospital. Int J Med Inform. 2000;57:21–40.

    Article  CAS  PubMed  Google Scholar 

  52. Lapinsky SE, Wax R, Showalter R, et al. Prospective evaluation of an internet-linked handheld computer critical care knowledge access system. Crit Care. 2004;8:R414–21.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Enders SJ, Enders JM, Holstad SG. Drug-information software for Palm operating system personal digital assistants: breadth, clinical dependability, and ease of use. Pharmacotherapy. 2002;22:1036–40.

    Article  PubMed  Google Scholar 

  54. Robinson RL, Burk MS. Identification of drug–drug interactions with personal digital assistant-based software. Am J Med. 2004;116:357–8.

    Article  PubMed  Google Scholar 

  55. Bergeron BP. Technology-enabled education. Postgrad Med. 1998;103:31–4.

    Google Scholar 

  56. Scales DC, Dainty K, Hales B, Pinto R, Fowler RA, Adhikari NK, Zwarenstein M. A multifaceted intervention for quality improvement in a network of intensive care units: a cluster randomized trial. JAMA. 2011;305:363–72.

    Article  CAS  PubMed  Google Scholar 

  57. Chang P, Hsu YS, Tzeng YM, et al. Development and pilot evaluation of user acceptance of advanced mass-gathering emergency medical services PDA support systems. Medinfo. 2004;11:1421–5.

    Google Scholar 

  58. Bures S, Fishbain JT, Uyehara CFT, et al. Computer keyboards and faucet handles as reservoirs of nosocomial pathogens in the intensive care unit. Am J Infect Control. 2000;28:465–70.

    Article  CAS  PubMed  Google Scholar 

  59. Braddy CM, Blair JE. Colonization of personal digital assistants used in a health care setting. Am J Infect Control. 2005;33:230–2.

    Article  PubMed  Google Scholar 

  60. Neely AN, Sittig DF. Basic microbiologic and infection control information to reduce the potential transmission of pathogens to patients via computer hardware. J Am Med Inform Assoc. 2002;9:500–8.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Hassoun A, Vellozzi EM, Smith MA. Colonization of personal digital assistants carried by healthcare professionals. Infect Control Hosp Epidemiol. 2004;25:1000–1.

    Article  PubMed  Google Scholar 

  62. Rosenfeld BA, Dorman T, Breslow MJ, Pronovost P, Jenckes M, Zhang N, Anderson G, Rubin H. Intensive care unit telemedicine: alternate paradigm for providing continuous intensivist care. Crit Care Med. 2000;28:3925–31.

    Article  CAS  PubMed  Google Scholar 

  63. Breslow MJ, Rosenfeld BA, Doerfler M, et al. Effect of a multiple-site intensive care unit telemedicine program on clinical and economic outcomes: an alternative paradigm for intensivist staffing. Crit Care Med. 2004;32:31–8.

    Article  PubMed  Google Scholar 

  64. Wilcox ME, Adhikari NKJ. The effect of telemedicine in critically ill patients: systematic review and meta-analysis. Crit Care. 2012;16:R127.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Breslow MJ. Remote ICU, care programs: current status. J Crit Care. 2007;22:66–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E. Lapinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lapinsky, S.E. (2014). Computers in Intensive Care. In: Scales, D., Rubenfeld, G. (eds) The Organization of Critical Care. Respiratory Medicine, vol 18. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0811-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0811-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0810-3

  • Online ISBN: 978-1-4939-0811-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics