Skip to main content

Free-Space and Atmospheric Quantum Communications

  • Chapter
  • First Online:
Advanced Free Space Optics (FSO)

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 186))

Abstract

The quantum internet with free-space and atmospheric quantum channels is becoming a reality [1, 2]. Emerging from the early ideas of Feynman and his colleagues [3], quantum information science (QIS) technologies are under development around the world to construct the quantum internet. Destined to fulfill capabilities well beyond our current imagination, the quantum internet is being shaped by both the laws of quantum physics and the compelling needs for increased speed, bandwidth and cybersecurity. Free-space and atmospheric quantum communications will play a critical role in extending the quantum internet to global use. Quantum information will be teleported through mobile information teleportation networks that necessarily will include satellites. Recent developments in quantum physics have the potential to add to free-space and atmospheric communications a physical layer of quantum security and increased bandwidth and speed beyond classical communications capabilities. Achieving a quantum communications internet with distributed quantum computing capabilities will first require research involving theory, experiments and the development of proof-of-principle physics and engineering systems. This chapter introduces the reader to free-space quantum communications by providing both a review of the fundamental foundations of quantum communications as applied to free-space and the atmosphere (Sect. 10.2) and a review of representative free-space and atmospheric quantum communications experiments (Sect. 10.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Hemmer, Closer to a quantum internet. Physics 6, 6–2 (2013)

    Google Scholar 

  2. H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)

    ADS  Google Scholar 

  3. R.P. Feynman, Quantum mechanical computers. Found. Phys. 17(6), 507–531 (1986)

    MathSciNet  ADS  Google Scholar 

  4. R.E. Meyers, K.S. Deacon, A.D. Tunick, Quantum internet concept depiction. US Army Research Laboratory (2011)

    Google Scholar 

  5. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 77–7 (1935)

    ADS  Google Scholar 

  6. J. Bell, On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  7. A. Aspect, P. Grangier, G. Roger, Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedanken-experiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 49 (1982)

    Google Scholar 

  8. V. Scarani, C. Lynn, L.S. Yang, Six quantum pieces: A first course in quantum physics. (World Scientific, 2010)

    Google Scholar 

  9. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics vol. I–III (Addison Wesley, 1997)

    Google Scholar 

  10. A. Lindner, D. Reisz, G. Wassiliadis, H. Freese, The uncertainty relation between particle number and phase. Phys. Lett. A 218, 1–4 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  11. M.O. Scully, M.S. Zubairy, Quantum Optics, 1 ed. (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  12. C.P. Williams, Explorations in Quantum Computing [AQ1](Springer, 2011)

    Google Scholar 

  13. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)

    Google Scholar 

  14. R.J. Glauber, Coherent and incoherent sates of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    MathSciNet  ADS  Google Scholar 

  15. Y.H. Shih, An Introduction to Quantum Optics: Photon and Biphoton Physics, 1, ed. (CRC press, Taylor & Francis, 2011)

    Google Scholar 

  16. W. Martienssen, E. Spiller, Coherence and fluctuations in light beams. Am. J. Phys. 32, 91–9 (1964)

    Google Scholar 

  17. L. Estes, L. Narducci, R. Tuft, Scattering of light from a rotating ground glass. J. Opt. Soc. Am. 61, 130–1 (1971)

    Google Scholar 

  18. R. Hanbury Brown, Intensity Interferometer (Taylor & Francis, London, 1974)

    Google Scholar 

  19. R.E. Meyers, K.S. Deacon, Y.H. Shih, Turbulence-free ghost imaging. Appl. Phys. Lett. 98, 11111–5 (2011)

    Google Scholar 

  20. T. Amri, J. Laurat, C. Fabre, Characterizing quantum properties of a measurement apparatus: Insights from the retrodictive approach. Phys. Rev. Lett. 106, 02050–2 (2011)

    Google Scholar 

  21. T. Amri, Quantum behavior of measurement apparatus. arXiv:1001.3032 (2010)

    Google Scholar 

  22. T.C. Ralph, P.K. Lam, A bright future for quantum communications. Nat. Photonics 3, 671–673 (2009)

    ADS  Google Scholar 

  23. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, 1991)

    Google Scholar 

  24. A. Cabello, A. Rossi, G. Vallone, F. De Martini, P. Mataloni, Proposed Bell experiment with genuine energy-time entanglement. Phys. Rev. Lett. 102, 04040–1 (2009)

    Google Scholar 

  25. N. Sangouard, C. Simon, B Zhao, Y-A Chen, H. de Riedmatten, J-W Pan, N. Gisin, Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 06230–1 (2008)

    Google Scholar 

  26. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)

    ADS  Google Scholar 

  27. D.N. Klyshko, Photons and Nonlinear Optics (CRC press, Gordon & Breach, New York, 1998)

    Google Scholar 

  28. P. Kuo, J. Pelc, O. Slattery, M. Fejer, X. Tang, Dual-channel, single-photon upconversion detector near 1300 nm Proc. SPIE 8518, 8518–8528 (2012)

    ADS  Google Scholar 

  29. H. Tu, Z. Jiang, D. Marks, S. Boppart, Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber. Appl. Phys. Lett. 94, 10110–9 (2009)

    Google Scholar 

  30. D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics Extended, 10 ed. (Wiley, 2013)

    Google Scholar 

  31. F. Steinlechner, S. Ramelow, M. Jofre, M. Gilaberte, T. Jennewein, J.P. Torres, M.W. Mitchell, V. Pruneri, Phase-stable source of polarization-entangled photons in a linear double-pass configuration. Opt. Express 21, 11943–11951 (2013) /P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, Y. Shih, High Intensity Source of Polarization Entangled Photon Pairs. Phys. Rev. Lett. 75(24), 4337–4340 (1995)

    ADS  Google Scholar 

  32. D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3 ed. (Addison-Wesley, 1997)

    Google Scholar 

  33. C. Bennett, G. Brassard, Quantum Cryptography: Public key distribution and coin tossing, Proceedings IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, India, 175 1984)

    Google Scholar 

  34. A.L. Linares, C. Kurtsiefer, Breaking a quantum key distribution system through a timing side channel. Opt. Express 15, 9388–9392 (2007)

    ADS  Google Scholar 

  35. V. Scarani, C. Kurtsiefer, The black paper of quantum cryptography: real implementation problems. [quant-ph] arXiv:0906.4547v2 (2012)

    Google Scholar 

  36. I. Gerhardt, Q. Liu, A.L. Linares, J. Skaar, C. Kurtsiefer, V. Makarov, Full-field implementation of a perfect eavesdropper on a quantum cryptography system. [quant-ph] arXiv:1011.0105v2 (2012)

    Google Scholar 

  37. A. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    MathSciNet  MATH  ADS  Google Scholar 

  38. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737–4740 (2000)

    ADS  Google Scholar 

  39. C. Bennet, Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    MathSciNet  ADS  Google Scholar 

  40. G. Barbosa, E. Corndorf, P. Kumar, H. Yuen, Quantum cryptography in free space with coherent-state light. Proc. SPIE 4821, 409–420 (2002)

    ADS  Google Scholar 

  41. G. Tabia, B.G. Englert, Efficient quantum key distribution with trines of reference-frame-free qubits. [quant-ph] arXiv:0910.5375v1 (2009)

    Google Scholar 

  42. V. D’Ambrosio, E. Nagali, S.P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, F. Sciarrino, Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3, 96–1 (2012)

    Google Scholar 

  43. T. Noh, Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 23050–1 (2009)

    MathSciNet  Google Scholar 

  44. G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247–252 (2012)

    ADS  Google Scholar 

  45. H.P. Yuen in Quantum Communications and Measurements II, ed. by P. Kumar et al. Quantum versus classical noise cryptography (Plenum Press, 2000), p. 399–404

    Google Scholar 

  46. R. Meyers, K. Deacon, Entangled and non-line-of-sight (NLOS) free-space photon quantum communication [Invited]. J. Opt. Netw. 5 (2005)

    Google Scholar 

  47. R.E. Meyers, K.S. Deacon, Free-space quantum communications system and process operative absent line of sight, US Patent 7,945,168 (17 May 11)

    Google Scholar 

  48. J. Yen, P. Poirier, M. O’Brien, Intentionally short-range communications (ISRC) 1993 Report. Tech. Rep. 1649, SPAWAR, U.S. Navy, February (1994)

    Google Scholar 

  49. DARPA SUVOS Semiconductor Ultraviolet Optical Sources

    Google Scholar 

  50. W.C. Brown, The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32(9), 1230–1242 (1984)

    ADS  Google Scholar 

  51. P.D. Naselsky, D.I. Novikov, I.D. Novikov, The Physics of the Cosmic Microwave Background (Cambridge University Press, 2006)

    Google Scholar 

  52. C. Weedbrook, S. Pirandola, T.C. Ralph, Continuous-variable quantum key distribution using thermal states. Phys. Rev. A 86, 02231–8 (2012)

    Google Scholar 

  53. C. Lang, C. Eichler, L. Steffen, J.M. Fink, M.J. Woolley, A. Blais, A. Wallraff, Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies. Nat. Phys. 9, 345–348 (2013)

    Google Scholar 

  54. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wooters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  55. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  Google Scholar 

  56. R.E. Meyers, P. Lee, K.S. Deacon, A. Tunick, Q. Quraishi, D. Stack, A quantum network with atoms and photons. Proc. SPIE 8518, 8518–8514 (2012)

    ADS  Google Scholar 

  57. D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.-M. Duan, C. Monroe, Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)

    ADS  Google Scholar 

  58. D.N. Matsukevich, P. Maunz, D.L. Moehring, S. Olmschenk, C. Monroe, Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 15040–4 (2008)

    Google Scholar 

  59. J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, J.-W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012)

    ADS  Google Scholar 

  60. X. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, A. Mech, B. Wittmann, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, A. Zeilinger, Quantum teleportation using active feed-forward between two Canary Islands. Nature 489, 269 (2012)/T. Herbst, T. Scheidl, M. Fink, J. Handsteiner, B. Wittmann, R. Ursin, A. Zeilinger, Teleportation of entanglement over 143 km. arXiv: 1403.0009v3 (2014)

    Google Scholar 

  61. T. Scheidl, R. Ursin, A. Fedrizzi1, S. Ramelow, X. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, A. Zeilinger Feasibility of 300 km quantum key distribution with entangled states. New J. Phys. 11, 08500–2 (2009)

    Google Scholar 

  62. M. Pereira, L. Filpi, C. Monken, Cancellation of atmospheric turbulence angle-of-arrival fluctuations. arXiv:1202.3195v1 [quant-ph] (2012)

    Google Scholar 

  63. D. Fried, Statistics of a geometric representation of wavefront distortion. J. Opt. Soc. Am. 55, 142–7 (1965)

    MathSciNet  Google Scholar 

  64. B.-J. Pors, C.H. Monken, E.R. Eliel, J.P. Woerdman, Transport of orbital-angular-momentum entanglement through a turbulent atmosphere. Opt. Express 19, 6671–6683 (2011)

    ADS  Google Scholar 

  65. B. Heim, C. Erven, R. Laflamme, G. Weihs, T. Jennewein, Improving entangled free-space quantum key distribution in the turbulent atmosphere, 12th European Quantum Electronics Conference (May 2011)

    Google Scholar 

  66. A.A. Semenov, W. Vogel, Quantum light in the turbulent atmosphere. Phys. Rev. A 80, 021802(R) (2009)

    ADS  Google Scholar 

  67. P.W. Milonni, J.H. Carter, C.G. Peterson, R.J. Hughes, Effects of propagation through atmospheric turbulence on photon statistics. J. Opt. B Quantum Semiclassical Opt. 6, S742–S745 (2004)

    ADS  Google Scholar 

  68. Q.-L. Wu, Z.-F. Han, E.-L. Miao, Y. Liu, Y.-M. Dai, G.C. Guo, Synchronization of free-space quantum key distribution. Opt. Commun. 275, 486–490 (2007)

    ADS  Google Scholar 

  69. A. Zilberman, E. Golbraikh, N.S. Kopeika, Some limitations on optical communication reliability through Kolmogorov and non-Kolmogorov turbulence. Opt. Commun. 283, 1229–1235 (2010)

    ADS  Google Scholar 

  70. Y.-X. Zhang, Y.-G. Wang, J.-C. Xu, J.-Y. Wang, J.-J. Jia, Orbital angular momentum crosstalk of single photons propagation in a slant non-Kolmogorov turbulence channel. Opt. Commun. 284, 1132–1138 (2011)

    ADS  Google Scholar 

  71. M.G. Raymer, C.C. Cheng, Propagation of the optical Wigner function in random multiple-scattering media. Proc. SPIE 3927, 156–164 (2000)

    ADS  Google Scholar 

  72. M.G. Raymer, B.J. Smith, The Maxwell wave function of the photon. Proc. SPIE 5866, 29–3 (2005)

    Google Scholar 

  73. M. Hawton, Photon position measure. Phys. Rev. A 82, 01211–7 (2010)

    Google Scholar 

  74. M. Hawton, Photon location in spacetime. Phys. Scr. 2012, 01401–4 (2012)

    Google Scholar 

  75. A.A. Semenov, W. Vogel, Entanglement transfer through the turbulent atmosphere. Phys. Rev. A 81, 02383–5 (2010); A.A. Semenov, W. Vogel, Erratum: entanglement transfer through the turbulent atmosphere. Phys. Rev. A 85, 019908(E) (2012)

    Google Scholar 

  76. C.O. Alley, R.F. Chang, D.G. Curri, J. Mullendore, S.K. Poultney, J.D. Rayner, E.C. Silverberg, C.A. Steggerda, H.H. Plotkin, W. Williams, B. Warner, H. Richardson, B. Bopp, Apollo 11 laser ranging retro-reflector: initial measurements from the McDonald observatory. Science 167, 368–370 (1970)

    ADS  Google Scholar 

  77. K.E. Wilson, An overview of the GOLD experiment between the ETS-VI satellite and the table mountain facility. TDA Progress Report 42–124, February 15 (1996)

    Google Scholar 

  78. K.E. Wilson, J.R. Lesh, K. Araki, Y. Arimoto, Overview of the ground-to-orbit lasercom demonstration (GOLD). Proc. SPIE 2990, 2–3 (1997)

    Google Scholar 

  79. M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, K. Arai, Ground-to-satellite laser communication experiments. IEEE A&E Systems Magazine (August 2008)

    Google Scholar 

  80. Y. Arimoto, M. Toyoshima, M. Toyoda, T. Takahashi, M. Shikalani, K. Araki, Preliminary result on laser communication experiment using Engineering Test Satellite-VI (ETS-VI). Proc. SPIE 2381, 151–158 (1995)

    ADS  Google Scholar 

  81. M. Toyoshima, H. Takenaka, Y. Shoji, Y. Takayama, Y. Koyama, H. Kunimori, Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space. Opt. Express 17, 22333–22340 (2009)

    ADS  Google Scholar 

  82. C. Erven, C. Couteau, R. Laflamme, G. Weihs, Entangled quantum key distribution over two free-space optical links. Opt. Express 16, 16840–16853 (2008)

    ADS  Google Scholar 

  83. C. Erven, C. Couteau, R. Laflamme, G. Weihs, Entanglement based free-space quantum key distribution. Proc. SPIE 7099, 70991–6 (2008)

    ADS  Google Scholar 

  84. I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, Free-space quantum key distribution with entangled photons. Appl. Phys. Lett. 89, 10112–2 (2006)

    Google Scholar 

  85. J.C. Bienfang, A.J. Gross, A. Mink, B.J. Hershman, A. Nakassis, X. Tang, R. Lu, D.H. Su, C.W. Clark, C.J. Williams, E.W. Hagley, J. Wen, Quantum key distribution with 1.25 Gbps clock synchronization. Opt. Express 12, 2011–2016 (2004)

    ADS  Google Scholar 

  86. A. Restellia, J.C. Bienfang, A. Mink, C.W. Clark, Quantum key distribution at GHz transmission rates. Proc. SPIE 7236, 72360–L (2009)

    ADS  Google Scholar 

  87. M. Toyoshima, H. Takenaka, Y. Shoji, Y. Takayama, M. Takeoka, M. Fujiwara, M. Sasaki, Polarization-basis tracking scheme in satellite quantum key distribution. Int. J. Opt. 25415–4 (2011)

    Google Scholar 

  88. B. Heim, C. Peuntinger, C. Wittmann, C. Marquardt, G. Leuchs, Free Space Quantum Communication using Continuous Polarization Variables in Applications of Lasers for Sensing and Free Space Communications, paper LWD3, Optical Society of America (2011)

    Google Scholar 

  89. M.J. Garcia-Martinez, N. Denisenko, D. Soto, D. Arroyo, A.B. Orue, V. Fernandez, High-speed free-space quantum key distribution system for urban daylight applications. Appl. Opt. 52(14), 3311–3317 (2013)

    ADS  Google Scholar 

  90. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger, High-fidelity transmission of entanglement over a high-loss freespace channel. Nat. Phys. 5, 389–392 (2009)

    Google Scholar 

  91. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zeilinger, Entanglement based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)

    Google Scholar 

  92. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, J.G. Rarity, A. Zeilinger, H. Weinfurter, Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 01050–4 (2007)

    Google Scholar 

  93. I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, P. Villoresi, Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett. 109, 20050–2 (2012)

    Google Scholar 

  94. J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, K. Chen, C-Z Peng, J-W Pan, Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. arXiv:1210.7556 [quant-ph] (29 October 2012)

    Google Scholar 

  95. J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C-Z Peng, J-W Pan, Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. Nat. Photonics 7, 387–393 (2013)/M. Zhang, L. Zhang, J. Wu, S. Yang, X. Wan, Z. He, J. Jia, D.S. Citrin, J. Wang, Detection and compensation of basis deviation in satellite-to-ground quantum communications. Optics Express 22(8), 9871-9886 (2014)

    ADS  Google Scholar 

  96. R.J. Hughes, J.E. Nordholt, D. Derkacs, G.C. Peterson, Free-space Quantum Key Distribution over 10km in Daylight and at Night. Los Alamos Report LA-UR-02-449. [arXiv:quant-ph/0206092v1] (2002)

    Google Scholar 

  97. R.J. Hughes, J.E. Nordholt, D. Derkacs, C.G. Peterson, Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43.1–43.14 (2002)

    Google Scholar 

  98. R. Hughes, J. Nordholt, J. Rarity, Summary of Implementation Schemes for Quantum Key Distribution and Quantum Cryptography—A Quantum Information Science and Technology Roadmap; Part 2: Quantum Cryptography; Section 6.2: Weak Laser Pulses through Free Space (2004)

    Google Scholar 

  99. D.M. Benton, P.M. Gorman, P.R. Tapster, D.M. Taylor, A compact free space quantum key distribution system capable of daylight operation. Opt. Commun. 283, 2465–2471 (2010)

    ADS  Google Scholar 

  100. M.P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, C. Kurtsiefer, Daylight operation of a free space, entanglement-based quantum key distribution system. New J. Phys. 11, 04500–7 (2009)

    Google Scholar 

  101. NuCrypt, AOptix, Press Release: AOptix Technologies and NuCrypt Demonstrate Physical-Layer Quantum Encryption for the Air Force Research Laboratory. (AOptix Technologies, Campbell, 2009)

    Google Scholar 

  102. S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, H. Weinfurter, Air to ground quantum key distribution. 2nd Annual Conference on Quantum Cryptography (QCRYPT), Singapore, 2012/S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, H. Weinfurter, Air-to-ground quantum communication. Nature Photonics 7, 382 -386 (2013)

    Google Scholar 

  103. S. Nauerth, F. Moll, M. Rau, J. Horwath, C. Fuchs, H. Weinfurter, Experimental aircraft to ground BB84 quantum key distribution. [AQ2]Proc SPIE. 8518, (2012)

    Google Scholar 

  104. G. Temporao, H. Zbinden, S. Tanzilli, N. Gisin, T. Aellen, M. Giovannini, J. Faist, J.P. Von Der Weid, Feasibility study of free-space quantum key distribution in the mid-infrared. Quantum Inf. Comput. 8, 1–11 (2008)

    MathSciNet  Google Scholar 

  105. Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J.S. Pelc, M.M. Fejer, C.-Z. Peng, Q. Zhang, J.-W. Pan, Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 13050–2 (2013)

    Google Scholar 

  106. T. Lunghi, J. Kaniewski, F. Bussières, R. Houlmann, M. Tomamichel, A. Kent, N. Gisin, S. Wehner, H. Zbinden, Experimental bit commitment based on quantum communication and special relativity. Phys. Rev. Lett. 111, 18050–4 (2013)

    Google Scholar 

  107. Y. Liu, Y. Cao, M. Curty, S.-K. Liao, J. Wang, K. Cui, Y.-H. Li, Z.-H. Lin, Q.-C. Sun, D.-D. Li, H.-F. Zhang, Y. Zhao, T.-Y. Chen, C.-Z. Peng, Q. Zhang, A. Cabello, J.-W. Pan, Experimental unconditionally secure bit commitment. arXiv:1306.4413v2 [quant-ph] (25 June 2013)

    Google Scholar 

  108. M. Aspelmeyer, H.R. Bohm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, A. Zeilinger, Long-distance free-space distribution of quantum entanglement. Science 301, 621–623 (2003)

    ADS  Google Scholar 

  109. K.J. Resch, M. Lindenthal, B. Blauensteiner, H.R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe1, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, A. Zeilinger, Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 20–2 (2005)

    Google Scholar 

  110. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, A. Zeilinger, Quantum teleportation across the Danube. Nature 430, 849–849 (2004)

    ADS  Google Scholar 

  111. X-M Jin, J-G Ren, B. Yang, Z-H Yi, F. Xhou, X-F Xu, S-K Wang, D. Yang, Y.F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C-Z Peng, J-W Pan, Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010)

    ADS  Google Scholar 

  112. X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, A. Mech, B. Wittmann, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, A. Zeilinger, Quantum teleportation using active feed-forward between two Canary Islands. arXiv 1205.3909v1 [quant-ph] (17 May 2012)

    Google Scholar 

  113. Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, J.-W. Pan, Entanglement-based quantum key distribution with biased basis choice via free space. Opt. Express 21, 27260–27268 (2013)

    ADS  Google Scholar 

  114. C. Erven, D. Hamel, K. Resch, R. Laflamme, G. Weihs, Entanglement Based Quantum Key Distribution Using a Bright Sagnac Entangled Photon Source. First International Conference, QuantumComm 2009, Naples, Italy (2010)

    Google Scholar 

  115. J.D. Franson, Quantum communication using entangled photon holes. Conference-Frontiers in Optics, Rochester, NY, October 14–18 (2012)

    Google Scholar 

  116. B. Heim, D. Elser, T. Bartley, M. Sabuncu, C. Wittmann, D. Sych, C. Marquardt, G. Leuchs, Atmospheric channel characteristics for quantum communication with continuous polarization variables. Appl. Phys. B 98, 635–640 (2010)

    ADS  Google Scholar 

  117. M. Peev et al., The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 07500–1 (2009)

    Google Scholar 

  118. D. Elser, T. Bartley, B. Heim, C. Wittmann, D. Sych, G. Leuchs, Feasibility of free space quantum key distribution with coherent polarization states. New J. Phys. 11, 04501–4 (2009)

    Google Scholar 

  119. B. Heim, D. Elser, T. Bartley, M. Sabuncu, C. Wittmann, D. Sych, C. Marquardt, G. Leuchs, Atmospheric channel characteristics for quantum communication with continuous polarization variables. Appl. Phys. B 98, 635–640 (2010)

    ADS  Google Scholar 

  120. G. Weihs, C. Erven, Entangled free-space quantum key distribution. Proc. SPIE 6780, 67801–3 (2007)

    ADS  Google Scholar 

  121. H. Weier, T. Schmitt-Manderbach, N. Regner, C. Kurtsiefer, H. Weinfurter, Free space quantum key distribution: towards a real life application. Prog. Phys. 54, 840–845 (2006)

    Google Scholar 

  122. A. Ling, M.P. Peloso, I. Marcikic, V. Scarani, A. Lamas-Linares, C. Kurtsiefer, Experimental quantum key distribution based on a Bell test. Phys. Rev. A 78, 020301(R) (2008)

    ADS  Google Scholar 

  123. A. Ling, M. Peloso, I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, Experimental E91 quantum key distribution. Proc. SPIE 6903, 69030–U (2008)

    ADS  Google Scholar 

  124. A. Zeilinger, Long-distance quantum cryptography with entangled photons. Proc. SPIE 6780, 67800–B (2007)

    ADS  Google Scholar 

  125. P. Panthong, S. Chiangga, K. Sripimanwat, T. Sanguankotchakorn, C. Li, L. Liang, Experimental free space quantum key distribution. Fourth International Conference on Optical Communications and Networks (ICOCN 2005), 159–162 (2005)

    Google Scholar 

  126. C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.L. Tian, J.-W Pan, Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 15050–1 (2005)

    Google Scholar 

  127. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P.M. Gorman, P.R. Tapster, J.G. Rarity,Quantum cryptography: a step towards global key distribution. Nature 419, (2002)

    Google Scholar 

  128. P.J. Edwards, P. Lynam, The University of Canberra–Telstra Tower Free-Space Quantum Key Distribution Testbed. ITEE Society Monitor (March 2002)

    Google Scholar 

  129. P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, C. Barbieri, Single-photon exchange advances Earth-to-space quantum link. New J. Phys. 10, 03303–8 (2008)

    Google Scholar 

  130. C. Bonato, A. Tomaello, V. Da Deppo, G. Naletto, P. Villoresi, Study of the Quantum Channel between Earth and Space for Satellite Quantum Communications, ed. by K. Sithamparanathan. Psats 2009, LNICST 15, 37–40 (2009)

    Google Scholar 

  131. J. Yin, Y. Cao, S.-B. Liu, G.-S. Pan, J.-H. Wang, T. Yang, Z.-P. Zhang, F.-M. Yang, Y.-A. Chen, C.-Z. Peng, J.-W Pan, Experimental quasi-single-photon transmission from satellite to earth. Opt. Express 21, 20032–20040 (2013)

    ADS  Google Scholar 

  132. J.M. Perdigues Armengol, B. Furch, C. J. de Matos, O. Minster, L. Cacciapuoti, M. Pfennigbauer, M. Aspelmeyer, T. Jennewein, R. Ursin, T. Schmitt-Manderbach, G. Baister, J. Rarity, W. Leeb, C. Barbieri, H. Weinfurter, A. Zeilinger, Quantum communications at ESA: towards a space experiment on the ISS. Acta Astronaut. 63, 165–178 (2008)

    ADS  Google Scholar 

  133. R. Ursin, T. Jennewein, A. Zeilinger, Space-QUEST: quantum physics and quantum communication in space. Proc. SPIE 7236, 72360–9 (2009)

    ADS  Google Scholar 

  134. T. Scheidl, E. Wille, R. Ursin, Quantum optics experiments using the international space station: a proposal. New J. Phys. 15, 04300–8 (2013)

    Google Scholar 

  135. L. Ma, O. Slattery, A. Mink, X. Tang, Low noise up-conversion single photon detector and its applications in quantum information systems. Proc. SPIE 7465, 74650–W (2009)

    ADS  Google Scholar 

  136. G.-L. Shentu, X.-X. Xia, Q.-C. Sun, J.S. Pelc, M.M. Fejer, Q. Zhang, J.-W. Pan, Upconversion single photon detection near 2 um. Opt. Lett. 38, 498–5 (2013)

    ADS  Google Scholar 

  137. G.A. Barbosa, E. Corndorf, P. Kumar, H.P Yuen, Quantum cryptography in free space with coherent-state light. Proc. SPIE 4821, 40–9 (2002)

    Google Scholar 

  138. M. Toyoshima, Y. Takayama, W. Klaus, H. Kunimori, M. Fujiwara, M. Sasaki, Free-space quantum cryptography with quantum and telecom communication channels. Acta Astronaut. 63, 1–4 (2008)

    Google Scholar 

  139. M.S. Godfrey, A.M. Lynch, J.L. Duligall, W.J. Munro, K.J. Harrison, J.G. Rarity, Free-space secure key exchange from 1 m to 1000 km. Proc. SPIE 6399, 63990–E (2006)

    Google Scholar 

  140. A.M. Lance, T. Symul, V. Sharma, C. Weedbrook, T.C. Ralph, P.K. Lam, No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95, 18050–3 (2005)

    Google Scholar 

  141. V. Sharma, A.M. Lance, T. Symul, C. Weedbrook, T.C. Ralph, P.K. Lam, A complete quantum cryptographic system using a continuous wave laser. Proc. SPIE 6038, 60380–3 (2005)

    Google Scholar 

  142. V.L. Kurochkin, I.I. Ryabtsev, I.G. Neizvestny, Quantum cryptography and quantum-key distribution with single photons. Russ. Microlectron. 35, 31–36 (2006)

    Google Scholar 

  143. T. Hirano, A. Shimoguchi, K. Shirasaki, S. Tokunaga, A. Furuki, Y. Kawamoto, R. Namiki, Practical implementation of continuous-variable quantum key distribution. Proc. SPIE 6244, 62440–O (2006)

    ADS  Google Scholar 

  144. H. Salih, Z.-H. Li, M. Al-Amri, M.S. Zubairy, Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 110, 17050–2 (2013)

    Google Scholar 

  145. T.S. Humble, R.S. Bennink, W.P. Grice, I.J. Owens, Sensing intruders using entanglement: a photonic quantum fence. Proc. SPIE 7342, 73420–H (2009)

    ADS  Google Scholar 

  146. R.E. Meyers, K.S. Deacon, Y.H. Shih, Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A 77, 041801(R) (2008)

    ADS  Google Scholar 

  147. R.E. Meyers, K.S. Deacon, Y.H. Shih, Positive-negative turbulence-free ghost imaging. Appl. Phys. Lett. 100, 13111–4 (2012)

    Google Scholar 

  148. G.A. Tyler, R.W. Boyd, Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett. 34, 142–144 (2009)

    Google Scholar 

  149. R.W. Boyd, B. Rodenberg, M. Mirhosseini, S. Barnett, Influence of atmospheric turbulence on the propagation of quantum states of light using plane-wave encoding. Opt. Express 19, 18310–18317 (2011)

    ADS  Google Scholar 

  150. G.P. Berman, A.A. Chumak, Quantum effects of a partially coherent beam propagating through the atmosphere. Proc. SPIE 6710, 67100–M (2007)

    ADS  Google Scholar 

  151. C. Yan, H. Yu, Effect of turbulent atmosphere on quantum key distribution systems. Acta Optica. Sinica 27, 21–25 (2007)

    MathSciNet  Google Scholar 

  152. R.T. Willis, F.E. Becerra, L.A. Orozco, S.L. Rolston, Correlated photon pairs generated from a warm atomic ensemble. Phys. Rev. A 82, 05384–2 (2010)

    Google Scholar 

  153. J. Lee, D.H. Park, S. Mittal, M. Dagenais, S.L. Rolston, Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler. New J. Phys. 15, 04301–0 (2013)

    Google Scholar 

  154. L. Li, Y.O. Dudin, A. Kuzmich, Entanglement between light and an optical atomic excitation. Nature 498, 466–469 (2013)

    ADS  Google Scholar 

  155. Y.O. Dudin, L. Li, A. Kuzmich, Light storage on the minute scale. Phys. Rev. A 87, 031801(R) (2013)

    ADS  Google Scholar 

  156. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, J.-W. Pan, Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (Aug 2008)

    ADS  Google Scholar 

  157. L.-M. Duan, C. Monroe, Robust quantum information processing with atoms, photons and atomic ensembles. Adv. At. Mol. Opt. Phys. 55, 419–464 (2008)

    ADS  Google Scholar 

  158. L.-M. Duan, C. Monroe, Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010)

    ADS  Google Scholar 

  159. A.G. Radnaev, Y.O. Dudin, R. Zhao, H.H. Jen, S.D. Jenkins, A. Kuzmich, T.A.B. Kennedy, A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010)

    Google Scholar 

  160. Y.O. Dudin, A.G. Radnaev, R. Zhao, J.Z. Blumoff, T.A.B. Kennedy, A. Kuzmich, Entanglement of light-shift compensated atomic spin waves with telecom light, arXiv:1009.4180v1 [quant-ph] (21 Sept 2010)

    Google Scholar 

  161. S. Choi, H. Deng, J. Laurat, H.J. Kimble, Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–72 (2008)

    ADS  Google Scholar 

  162. G. Kleine Buning, J. Will, W. Ertmer, E. Rasel, J. Arlt, C. Klempt, F. Ramirez-Martinez, F. Piechon, P. Rosenbusch, Extended coherence time on the clock transition of optically trapped rubidium. Phys. Rev. Lett. 106, 24080–1 (2011)

    Google Scholar 

  163. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A.V. Gorshkov, T. Pohl, M.D. Lukin, V. Vuletic, Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012)

    ADS  Google Scholar 

  164. C. Deutsch, F. Ramirez-Martinez, C. Lacroute, F. Reinhard, T. Schneider, J.N. Fuchs, F. Piechon, F. Laloe, J. Reichel, P. Rosenbusch, Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 02040–1 (2010)

    Google Scholar 

  165. X.-M. Jin, J. Yang, H. Zhang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, B. Zhao, S. Chen, J.-W. Pan, Quantum interface between frequency-uncorrelated down-converted entanglement and atomic-ensemble quantum memory. arXiv:1004.4691v1 [quant-ph] (April 2010)

    Google Scholar 

  166. F. Yang, T. Mandel, C. Lutz, Z-S Yuan, J-W Pan, Transverse Mode Revival of a Light-Compensated Quantum Memory. arXiv:1012.2361v2 [quant-ph] (December 2010)

    Google Scholar 

  167. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (November 2001)

    ADS  Google Scholar 

  168. B. Zhao, M. Muller, K. Hammerer, P. Zoller, Efficient quantum repeater based on deterministic Rydberg gates. Phys. Rev. A 81, 05232–9 (2010)

    Google Scholar 

  169. H.P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, G. Rempe, A single-atom quantum memory. Nature 473, 190–193 (2011)

    ADS  Google Scholar 

  170. B. Julsgaard, J. Sherson, J.I. Cirac, J. Fiuraek, E.S. Polzik, Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004)

    ADS  Google Scholar 

  171. L. Slodicka, G. Hetet, N. Rock, P. Schindler, M. Hennrich, R. Blatt, Atom-atom entanglement by single-photon detection. arXiv:1207.5468v1 [quant-ph] (2012)

    Google Scholar 

  172. R.E. Meyers, K.S. Deacon, Entangled quantum communications and quantum imaging. Proc. SPIE 5161, 28–0 (2004)

    Google Scholar 

  173. R.E. Meyers, K.S. Deacon, D.L. Rosen, Entangled Quantum Communications and Quantum Imaging, US Patent 7,536,012 (May 19, 2009)

    Google Scholar 

  174. R.E. Meyers, K.S. Deacon, Quantum Fourier Transform Based Information Transmission System and Method, US Patent 7,660,553 (February 9, 2010)

    Google Scholar 

  175. C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. Higgins, Z. Yan, C. Pugh, J. Bourgoin, R. Prevedel, L. Shalm, L. Richards, N. Gigov, R. LaFlamme, G. Weighs, T. Jennewein, K. Resch, Experimental three-photon quantum nonlocality under strict locality conditions, Nat. Photonics 8, 292–296 (2014)

    Google Scholar 

  176. G. Vallone, D. Bacco, D. Dequall, S. Gaiarin, V.Luceri, G. Biano, P. Valloresi, Experimental Satellite Quantum Communications, arXiv:1406.4051v1 [quant-ph] (2014)

    Google Scholar 

  177. T. Jennewein, B. Higgins, E. Choi, Progress toward a quantum communication satellite. SPIE Newsroom, 10.1117/2.1201404.005453 (01 May 2014)

    Google Scholar 

Download references

Acknowledgment

The authors thank the US Army Research Laboratory (ARL) for support. The authors also thank Dr. Sanjit Karmakar, a post-doc fellow at ARL, for his helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meyers, R. (2015). Free-Space and Atmospheric Quantum Communications. In: Advanced Free Space Optics (FSO). Springer Series in Optical Sciences, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0918-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0918-6_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0917-9

  • Online ISBN: 978-1-4939-0918-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics