Skip to main content

Neuroplasticity and Virtual Reality

  • Chapter
  • First Online:
Virtual Reality for Physical and Motor Rehabilitation

Abstract

The nature of neuroplasticity and the physiological mechanisms involved in the induction of both short- and long-term changes in the brain that enable us to store and retrieve motor memories for later use is discussed. The ways in which neuroplastic changes can be classified using the biological principles related to neuroplasticity and the underlying tenets of learning are reviewed. The fundamental elements of experience-dependent neuroplasticity and clinical interventions, including VR technology, which have the potential to induce and affect neuroplasticity are considered. The empirical evidence of the effects of VR on neuroplastic changes in the brain is summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamovich, S. V., August, K., Merians, A., & Tunik, E. (2009). A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: A proof of concept study. Restorative Neurology and Neuroscience, 27(3), 209–223.

    CAS  PubMed  Google Scholar 

  • Adamovich, S. V., Fluet, G. G., Tunik, E., & Merians, A. S. (2009). Sensorimotor training in virtual reality: A review. NeuroRehabilitation, 25, 29–44.

    PubMed Central  PubMed  Google Scholar 

  • Adamovich, S. V., Merians, A. S., Boian, R., Tremaine, M., Burdea, G. S., Recce, M., et al. (2004). A virtual reality based exercise system for hand rehabilitation post-stroke: Transfer to function. Conference Proceedings - IEEE Engineering in Medicine and Biology Society, 7, 4936–4939.

    CAS  Google Scholar 

  • Alcantra, A. A., Lim, H. Y., Floyd, C. E., Garces, J., Mendenhall, J., Lyons, C. L., et al. (2011). Cocaine- and morphine-induced synaptic plasticity in the nucleus accumbens. Synapse, 65, 309–320.

    Article  Google Scholar 

  • Bagce, H. F., Saleh, S., Adamovich, S. V., & Tunik, E. (2011). Visuomotor discordance in virtual reality: Effects on online motor control. Conference Proceedings - IEEE Engineering in Medicine and Biology Society, 2011, 7262–7265.

    Google Scholar 

  • Bagce, H. F., Saleh, S., Adamovich, S. V., & Tunik, E. (2012). Visuomotor gain discordance alters online motor performance and enhances primary motor cortex excitability in patients with stroke. Neuromodulation, 15(4), 361–366.

    Article  PubMed Central  PubMed  Google Scholar 

  • Barker, A. T. (1999). The history and basic principles of magnetic nerve stimulation. Electroencephalography and Clinical Neurophysiology, 51(Suppl), 3–21.

    Google Scholar 

  • Berlucchi, G., & Buchtel, H.A. (2009). Neuronal plasticity: historical roots and evolution of meaning. Experimental Brain Research, 192(3), 307–319.

    Google Scholar 

  • Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews. Neuroscience, 12, 752–762.

    CAS  PubMed  Google Scholar 

  • Boyd, L. A., Randhawa, B., Vidoni, E. D., & Wessel, B. D. (2010). Motor learning after stroke: Is skill acquisition a prerequisite for contralesional neuroplastic change? Neuroscience Letters, 482, 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382, 252–255.

    Google Scholar 

  • Bray, S., Shimojo, S., & O’Doherty, J. P. (2007). Direct instrumental conditioning of neural activity using functional magnetic resonance imaging-derived reward feedback. Journal of Neuroscience, 27(28), 7498–7507.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, J.C.W., Roberts, N., Kemp, G.J., Gosney, M.A., Lye, M., & Whitehouse, G.H. (2001). A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cerebral Cortex, 11(7), 598–605.

    Google Scholar 

  • Calautti, J. C., & Baron, J. C. (2003). Functional neuroimaging studies of motor recovery after stroke in adults: A review. Stroke, 34, 1553–1566.

    Article  PubMed  Google Scholar 

  • Carey, L. M., Abbott, D. F., Puce, A., Jackson, G. D., Syngeniotis, A., & Donnan, G. A. (2002). Reemergence of activation with poststroke somatosensory recovery: A serial fMRI case study. Neurology, 59(5), 749–752.

    Google Scholar 

  • Carey, L. M., Abbott, D. F., Egan, G. F., O’Keefe, G. J., Jackson, G. D., Bernhardt, J., et al. (2006). Evolution of brain activation with good and poor motor recovery after stroke. Neurorehabilitation and Neural Repair, 20(1), 24–41.

    Article  PubMed  Google Scholar 

  • Cirstea, C. M., Brooks, W. M., Craciunas, S. C., Popescu, E. A., Choi, I. Y., Lee, P., et al. (2011). Primary motor cortex in stroke: A functional MRI-guided proton MR spectroscopic study. Stroke, 42(4), 1004–1009.

    Article  PubMed Central  PubMed  Google Scholar 

  • Deutsch, J. E., Merians, A. S., Adamovich, S., Poizner, H., & Budrea, G. C. (2004). Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke. Restorative Neurology Neuroscience, 22(3–5), 371–386.

    PubMed  Google Scholar 

  • Dombeck, D. A., & Reiser, M. B. (2012). Real neuroscience in virtual worlds. Current Opinion in Neurobiology, 22, 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15(2), 161–167.

    Google Scholar 

  • Dum, R. P., & Strick, P. L. (2005). Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. Journal of Neuroscience, 25(6), 1375–1386.

    Article  CAS  PubMed  Google Scholar 

  • Fang, P. C., Stepniewska, I., & Kass, J. H. (2005). Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti. The Journal of Comparative Neuroscience, 490(3), 305–333.

    Article  Google Scholar 

  • Federico, F., Simone, I. L., Lucivero, V., Giannini, P., Laddomada, G., Mezzapesa, D. M., et al. (1998). Prognostic value of proton magnetic resonance spectroscopy in ischemic stroke. Archives of Neurology, 55(4), 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M. S. (1999). Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proceedings of the National Academy of Science, 96(18), 10418–10421.

    Article  CAS  Google Scholar 

  • Graziano, M. S., & Gandhi, S. (2000). Location of the polysensory zone in the precentral gyrus of anesthetized monkeys. Experimental Brain Research, 135(2), 259–266.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M. S., & Gross, C. G. (1998a). Spatial maps for the control of movement. Current Opinion in Neurobiology, 8(2), 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M. S., & Gross, C. G. (1998b). Visual responses with and without fixation: Neurons in premotor cortex encode spatial locations independently of eye position. Experimental Brain Research, 118(3), 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Hadipour-Niktarash, A., et al. (2007). Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. Journal of Neuroscience, 27(49), 13413–13419.

    Article  CAS  PubMed  Google Scholar 

  • Hallet, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Research Reviews, 36, 169–174.

    Article  Google Scholar 

  • Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography – Theory, instrumentation, and applications to noninvasive studies of signal processing in the human brain. Reviews of Modern Physics, 65(2), 413–497.

    Article  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior. New York, NY: Wiley and Sons.

    Google Scholar 

  • Holden, M. K. (2005). Virtual environments for motor rehabilitation: Review. Cyberpsychology, Behavior and Social Networking, 8(3), 187–211.

    Article  Google Scholar 

  • Huang, M., Song, T., Hagler, D., Podgorny, I., Jousmaki, V., Cui, L., et al. (2007). A novel integrated MEG and EEG analysis method for dipolar sources. NeuroImage, 37(3), 731–748.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jang, S. H., You, S. H., Hallett, M., Cho, Y. W., Park, C., Cho, S., et al. (2005). Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: An experimenter-blind preliminary study. Archives of Physical Medicine and Rehabilitation, 86(11), 2218–2223.

    Article  PubMed  Google Scholar 

  • Johansen-Berg, H., Dawes, H., Guy, C., Smith, S. M., Wade, D. T., & Matthews, P. M. (2002). Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain, 125, 2731–2742.

    Article  PubMed  Google Scholar 

  • Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., et al. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: Resting-state fMRI study. NeuroImage, 59(1), 511–518.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kakei, S., Hoffman, D. S., & Strick, P. L. (2003). Sensorimotor transformations in cortical motor areas. Neuroscience Research, 46(1), 1–10.

    Article  PubMed  Google Scholar 

  • Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., et al. (1998). The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Science, 95, 861–868.

    Article  CAS  Google Scholar 

  • Kenyon, R. V., & Afenya, M. B. (1995). Training in virtual and real environments. Annals of Biomedical Engineering, 23(4), 445–455.

    Article  CAS  PubMed  Google Scholar 

  • Kleim, J.A., Hogg, T.M., VandenBerg, P.M., Cooper, N.R., Bruneau, R., & Remple, M. (2004). Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. The Journal of Neuroscience, 24(3), 628–633.

    Google Scholar 

  • Koessler, L., Maillard, L., Benhadid, A., Vignal, J. P., Braun, M., & Vespignani, H. (2007). Spatial localization of EEG electrodes. Clinical Neurophysiology, 37, 97–102.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, G., & Tremblay, F. (2007). Corticomotor facilitation associated with observation, imagery and imitation of hand actions: A comparative study in young and old adults. Experimental Brain Research, 177(2), 167–175.

    Article  PubMed  Google Scholar 

  • Lewis, J. W., & Van Essen, D. C. (2000a). Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. The Journal of Comparative Neurology, 428(1), 112–137.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, J. W., & Van Essen, D. C. (2000b). Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. The Journal of Comparative Neurology, 428(1), 79–111.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, S. J. G., Slabosz, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2005). Dopaminergic basis for deficits in working memory but not attentioanl set-shifting in Parkinson’s disease. Neuropsychologia, 43(6), 823–832.

    Article  PubMed  Google Scholar 

  • Logothetis, N.K., & Wandell, B.A. (2003). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735–769.

    Article  Google Scholar 

  • Marino, S., Ciurleo, R., Bramanti, P., Federico, A., & De Stefano, N. (2011). 1H-MR spectroscopy in traumatic brain injury. Neurocritical Care, 14(1), 127–133.

    Article  PubMed  Google Scholar 

  • Meehan, S.K., Randhawa, B., Wessel, B., & Boyd, L.A. (2011). Implicit sequence-specific motor learning after subcortical stroke is associated with increased prefrontal brain activations: an fMRI study. Human Brain Mapping, 32(2), 290–303.

    Google Scholar 

  • Merians, A. S., Fluet, G. G., Qiu, Q., Lafond, I., & Adamovich, S. V. (2011). Learning in a virtual environment using haptic systems for movement re-education: Can this medium be used from remodeling other behaviors and actions? Journal of Diabetes Science and Technology, 5(2), 301–308.

    Article  PubMed Central  PubMed  Google Scholar 

  • Merians, A. S., Poizner, H., Boian, R., Burdea, G., & Adamovich, S. (2006). Sensorimotor training in a virtual reality environment: Does it improve functional recovery poststroke. Neurorehabilitation and Neural Repair, 20(2), 252–267.

    Article  PubMed  Google Scholar 

  • Merians, A. S., Jack, D., Boian, R., Tremaine, M., Burdea, G. C., Adamovich, S. V., et al. (2002). Virtual reality-augmented rehabilitation for patients following stroke. Physical Therapy, 82(9), 898–915.

    PubMed  Google Scholar 

  • Mitchell, B. D., & Cauller, L. J. (2001). Corticocortical and thalamocortical projection to layer I of the frontal neocortex in rats. Brain Research, 921(1–2), 68–77.

    Article  CAS  PubMed  Google Scholar 

  • Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L., & Hallett, M. (2001). Role of the human cortex in rapid motor learning. Experimental Brain Research, 136(4), 431–438.

    Google Scholar 

  • Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644.

    Article  CAS  PubMed  Google Scholar 

  • Mulkey, R. M., & Malenka, R. C. (1992). Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron, 9, 967–975.

    Article  CAS  PubMed  Google Scholar 

  • Norris, D. G. (2003). High field human imaging. Journal of Magnetic Resonance Imaging, 18(5), 519–529.

    Article  PubMed  Google Scholar 

  • Nudo, R. J. (2006). Plasticity. NeuroRx: The Journal of the American Society for Experimental NeuroTherapeutics, 3, 420–427.

    Article  Google Scholar 

  • Nudo, R. J., & Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology, 75(5), 2144–2149.

    CAS  PubMed  Google Scholar 

  • Pascual-Leone, A., Cammarota, A., Wassermann, E.M., Brasil-Neto, J.P., Cohen, L.G., & Hallett, M. (1993). Modulation of motor cortical outputs to the reading hand of braille readers. Annals of Neurology, 34(1), 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Patuzzo, S., Fiaschi, A., & Manganotti, P. (2003). Modulation of motor cortex excitability in the left hemisphere during action observation: A single- and paired-pulse transcranial magnetic stimulation study of self- and non-self-action observation. Neuropsychologia, 41(9), 1272–1278.

    Article  PubMed  Google Scholar 

  • Richardson, A. G., Overduin, S. A., Valero-Cabré, A., Padoa-Schioppa, C., Pascual-Leone, A., Bizzi, E., et al. (2006). Disruption of primary motor cortex before learning impairs memory of movement dynamics. Journal of Neuroscience, 26(48), 12466–12470.

    Article  CAS  PubMed  Google Scholar 

  • Riva, G. (1998). Virtual environments in neuroscience. IEEE Transactions of Information Technology of Biomedicine, 2(4), 275–281.

    Article  CAS  Google Scholar 

  • Riva, G., Castelnuovo, G., & Mantovani, F. (2006). Transformation of flow in rehabilitation: The role of advanced communication technologies. Behavioural Research Methods, 38(2), 237–244.

    Article  Google Scholar 

  • Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation: Review. CyberPsychology and Behaviour, 8, 241–271.

    Article  Google Scholar 

  • Rothwell, J. C. (1997). Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. Journal of Neuroscience Methods, 74, 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Saleh, S., Adamovich, S., & Tunik, E. (2012). Resting state functional connectivity and task-related effective connectivity changes after upper extremity rehabilitation: A pilot study. Conference Proceedings - IEEE Engineering in Medicine and Biology Society, 2012, 4559–4562.

    Google Scholar 

  • Saleh, S., Adamovich, S.V., & Tunik, E. (2013). Visual feedback discordance mediates changes in brain activity and effective connectivity: A stroke fMRI dynamic causal modeling study. Advances in Biomedical Engineering (ICAMBE), 2nd International Conference, 85–88.

    Google Scholar 

  • Saleh, S., Bagce, H., Qiu, Q., Fluet, G., Merians, A., Adamovich, S., et al. (2011). Mechanisms of neural reorganization in chronic stroke subjects after virtual reality training. Conference Proceedings - IEEE Engineering in Medicine and Biology Society, 2011, 8118–8121.

    CAS  Google Scholar 

  • Salmoni, A.W., Schmidt, R.A., & Walter, C.B. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin, 95(3), 355–386.

    Google Scholar 

  • Schmidt, R. A., & Lee, T.D. (2011). Motor control and learning: A behavioral emphasis, 5th ed. (Champaign, IL: Human Kinetics).

    Google Scholar 

  • Slobounov, S. M., Zhang, K., Pennell, D., Ray, W., Johnson, B., & Sebastianelli, W. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: A functional MRI study. Experimental Brain Research, 202(2), 341–354.

    Article  PubMed Central  PubMed  Google Scholar 

  • Small, S. L., Hlustik, P., Noll, D. C., Genovese, C., & Solodkin, A. (2002). Cerebellar hemispheric activation ipsilateral to the paretic hand correlated with functional recovery after stroke. Brain, 125(7), 1544–1557.

    Article  CAS  PubMed  Google Scholar 

  • Snijders, H. J., Holmes, N. P., & Spence, C. (2007). Direction-dependent integration of vision and proprioception in reaching under the influence of the mirror illusion. Neuropsychologia, 45(3), 496–505.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., et al. (2005). Formation of a motor memory by action observation. Journal of Neuroscience, 25(41), 9339–9346.

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska, I., Fang, P. C., & Kaas, J. H. (2005). Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proceedings of the National Academy of Sciences, 102(13), 4878–4883.

    Article  CAS  Google Scholar 

  • Strafella, A. P., & Paus, T. (2000). Modulation of cortical excitability during action observation: A transcranial magnetic stimulation study. Neuroreport, 11(10), 2289–2292.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, S. K., Lourenço, C. B., Chilingaryan, G., Sveistrup, H., & Levin, M. F. (2013). Arm motor recovery using a virtual reality intervention in chronic stroke: Randomized control trial. Neurorehabilitation and Neural Repair, 27(1), 13–23.

    Article  PubMed  Google Scholar 

  • Thomas, M. J., Kalivas, P. W., & Shaham, Y. (2008). Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. British Journal of Pharmacology, 154, 327–342.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tessier, C.R. & Broadie, K. (2009). Activity-dependent modulation of neural circuit synaptic connectivity. Frontiers in Molecular Neuroscience, 2, 8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wise, S. P., Moody, S. L., Blomstrom, K. J., & Mitz, A. R. (1998). Changes in motor cortical activity during visuomotor adaptation. Experimental Brain Research, 121(3), 285–299.

    Google Scholar 

  • You, S. H., Jang, S. H., Kim, Y. H., Hallet, M., Ahn, S. H., Kwon, Y. H., et al. (2005). Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke- An experimenter-blind randomized study. Stroke, 36, 1166–1171.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine L. Cheung MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cheung, K.L., Tunik, E., Adamovich, S.V., Boyd, L.A. (2014). Neuroplasticity and Virtual Reality. In: Weiss, P., Keshner, E., Levin, M. (eds) Virtual Reality for Physical and Motor Rehabilitation. Virtual Reality Technologies for Health and Clinical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0968-1_2

Download citation

Publish with us

Policies and ethics