Skip to main content

Dietary Modification as a Weight Management Strategy

  • Chapter
  • First Online:
Treatment of the Obese Patient

Abstract

The ideal dietary prescription for obesity treatment produces clinically significant weight loss, improves the cardiometabolic profile above that which can be achieved by weight loss alone, enriches diet quality, and enhances appetite regulation. This chapter provides an overview of dietary prescriptions that have been investigated within randomized controlled trials (RCTs) for obesity treatment in adults. Research on three types of dietary prescriptions, energy-focused prescriptions, macronutrient-focused prescriptions, and dietary pattern-focused prescriptions, is reviewed. Amount of energy reduction that is incurred appears to be the predominant dietary factor that influences weight loss. While weight loss improves cardiometabolic parameters, differing dietary prescriptions may be able to enhance these improvements, with low-carbohydrate diets enhancing high-density lipoprotein-cholesterol outcomes and high-carbohydrate and low-fat diets improving total cholesterol and low-density lipoprotein-cholesterol outcomes. Dietary pattern-focused prescriptions for weight loss show the most promise for increasing dietary quality. For appetite regulation, a diet that is lower in energy density (ED) may assist with reducing hunger and improving satiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acheson KJ. Diets for body weight control and health: the potential of changing the macronutrient composition. Eur J Clin Nutr. 2013;67:462–6.

    Article  CAS  PubMed  Google Scholar 

  2. U.S. Department of Health and Human Services. Dietary guidelines for Americans. 2010 [cited 2013 Feb 20]. Available from: http://health.gov/dietaryguidelines/

  3. Karhunen L, Lyly M, Lapvetelainen A, Kolehmainen M, Laaksonen DE, Lahteenmaki L, et al. Psychobehavioural factors are more strongly associated with successful weight management than predetermined satiety effect or other characteristics of the diet. J Obes. 2012. doi:10.1155/2012/274068

  4. Taubes G. The diet delusion. London: Vermillion; 2008.

    Google Scholar 

  5. Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL, Garcia-Lago E, et al. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012;307:2627–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wells JCK. Obesity as malnutrition: the dimensions beyond energy balance. Eur J Clin Nutr. 2013;67:507–12.

    Article  CAS  PubMed  Google Scholar 

  7. Heymsfield SB, van Mierlo CA, van der Knaap HC, Heo M, Frier HI. Weight management using a meal replacement strategy: meta and pooling analysis from six studies. Int J Obes. 2003;27:537–49.

    Article  CAS  Google Scholar 

  8. American Dietetic Association. Position of the American Dietetic Association: weight management. J Am Diet Assoc. 2009;109:330–46.

    Article  Google Scholar 

  9. National Heart, Lung and Blood Institute. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Obes Res. 1998;6:51S–210S.

    Article  Google Scholar 

  10. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New Engl J Med. 2002;346:393–403.

    Article  PubMed Central  Google Scholar 

  11. Mayer-Davis EJ, Sparks KC, Hirst K, Costacou T, Lovejoy JC, Regensteiner JG, et al. Dietary intake in the Diabetes Prevention Program cohort: baseline and 1-year post-randomization. Ann Epidemiol. 2004;14:763–72.

    Article  PubMed  Google Scholar 

  12. Metzner CE, Folberth-Vogele A, Bitterlich N, Lemperle M, Schafer S, Alteheld B, et al. Effect of a conventional energy-restricted modified diet with or without meal replacement on weight loss and cardiometabolic risk profile in overweight women. Nutr Metab. 2011;8:64.

    Article  CAS  Google Scholar 

  13. Cheskin LJ, Mitchell AM, Jhaveri AD, Mitola AH, Davis LM, Lewis RA, et al. Efficacy of meal replacements versus a standard food-based diet for weight loss in type 2 diabetes: a controlled clinical trial. Diabetes Educ. 2008;34:118–27.

    Article  PubMed  Google Scholar 

  14. Fuglestad PR, Jeffery R, Sherwood N. Lifestyle patterns associated with diet, physical activity, body mass index and amount of recent weight loss in a sample of successful weight losers. Int J Behav Nutr Phys Act. 2012;9:79.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Davis LM, Coleman C, Kiel J, Rampolla J, Hutchisen T, Ford L, et al. Efficacy of a meal replacement diet plan compared to a food-based diet plan after a period of weight loss and weight maintenance: a randomized controlled trial. Nutr J. 2010;9:11.

    Article  PubMed Central  PubMed  Google Scholar 

  16. The Look AHEAD Research Group. Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control Clin Trials. 2003;24:610–28.

    Article  Google Scholar 

  17. Look AHEAD Research Group, Pi-Sunyer X, Blackburn G, Brancati F, Bray G, Brigh R, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30:1374–83.

    Article  PubMed  Google Scholar 

  18. Wadden TA, West DS, Neiberg RH, Wing R, Ryan DH, Johnson KC, et al. One-year weight losses in the Look AHEAD study: factors associated with success. Obesity (Silver Spring). 2009;17:713–22.

    Article  PubMed Central  Google Scholar 

  19. Ashley JM, Herzog H, Clodfelter S, Bovee V, Schrage J, Pritsos C. Nutrient adequacy during weight loss interventions: a randomized study in women comparing the dietary intake in a meal replacement group with a traditional food group. Nutr J. 2007;6:12.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bachman JL, Raynor HA. Effects of manipulating eating frequency during a behavioral weight loss intervention: a pilot randomized controlled trial. Obesity. 2012;20:985–92.

    Article  CAS  PubMed  Google Scholar 

  21. Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity; 2013;21:2504–12.

    Google Scholar 

  22. Tsai AG, Wadden TA. The evolution of very-low-calorie diets: an update and meta-analysis. Obesity. 2006;14:1283–93.

    Article  PubMed  Google Scholar 

  23. Mulholland Y, Nicokavoura E, Broom J, Rolland C. Very-low-energy diets and morbidity: a systematic review of longer-term evidence. Br J Nutr. 2012;108:832–51.

    Article  CAS  PubMed  Google Scholar 

  24. Atkins R. Dr. Atkins’ new diet revolution. New York, NY: Avon; 2002.

    Google Scholar 

  25. Journel M, Chaumontet C, Darcel N, Fromentin G, Tome D. Brain responses to high-protein diets. Adv Nutr. 2012;3:322–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Foster GD, Wyatt HR, Hill J, McGuckin BG, Brill C, Mohammed S, et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med. 2003;348:2082–90.

    Article  CAS  PubMed  Google Scholar 

  27. Martin C, Rosenbaum D, Han H, Geiselman P, Wyatt HR, Hill J, et al. Change in food cravings, food preferences, and appetite during a low-carbohydrate and low-fat diet. Obesity (Silver Spring). 2011;19:1963–70.

    Article  CAS  Google Scholar 

  28. Brinkworth GD, Noakes M, Buckley JD, Keogh JB, Clifton PM. Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo. Am J Clin Nutr. 2009;90:23–32.

    Article  CAS  PubMed  Google Scholar 

  29. Yancy WS, Olsen MK, Guyton JR, Bakst RP, Westman EC. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia. Ann Intern Med. 2004;140:769–77.

    Article  PubMed  Google Scholar 

  30. St Jeor S, Howard B, Prewitt T, Bovee V, Bazzarre T, Eckel R, et al. Dietary protein and weight reduction: a statement for healthcare professionals from the Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation. 2001;104:1869–74.

    Article  CAS  PubMed  Google Scholar 

  31. Bravata D, Sanders L, Huang L, Krumholz H, Olkin I, Gardner C, et al. Efficacy and safety of low-carbohydrate diets: a systematic review. JAMA. 2003;289:1837–50.

    Article  CAS  PubMed  Google Scholar 

  32. Santos FL, Esteves SS, da Costa Pereira A, Yancy Jr WS, Nunes JP. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes Rev. 2012;13:1048–66.

    Article  CAS  PubMed  Google Scholar 

  33. Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WS, Brehm BJ, et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors. Arch Intern Med. 2006;166:285–93.

    Article  CAS  PubMed  Google Scholar 

  34. Foster GD, Wyatt HR, Hill JO, Makris AP, Rosenbaum D, Brill C, et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med. 2010;153:147–57.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Jenkins D, Wolever T, Taylor R, Barker H, Fielden H, Baldwin J, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34:362–6.

    CAS  PubMed  Google Scholar 

  36. Raatz S, Torkelson C, Redmon J, Reck K, Kwong C, Swanson J, et al. Reduced glycemic index and glycemic load diets do not increase the effects of energy restriction on weight loss and insulin sensitivity in obese men and women. J Nutr. 2005;135:2387–91.

    CAS  PubMed  Google Scholar 

  37. Monro J, Shaw M. Glycemic impact, glycemic glucose equivalents, glycemic index, and glycemic load: definitions, distinctions, and implications. Am J Clin Nutr. 2008;87(Suppl):237S–43S.

    CAS  PubMed  Google Scholar 

  38. Esfahani A, Wong J, Mirrahimi A, Villa C, Kendall C. The application of the glycemic index and glycemic load in weight loss: a review of the clinical evidence. IUBMB Life. 2011;63:7–13.

    Article  CAS  PubMed  Google Scholar 

  39. Pawlak D, Ebbeling C, Ludwig D. Should obese patients be counselled to follow a low-glycaemic index diet? Yes. Obes Rev. 2002;3:235–43.

    Article  CAS  PubMed  Google Scholar 

  40. Ludwig D. Clinical update: the low-glycaemic-index diet. Lancet. 2007;369:890–2.

    Article  PubMed  Google Scholar 

  41. Thomas DE, Elliott EJ, Baur L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev 2007;(3):CD005105.

    Google Scholar 

  42. Das S, Gilhooly C, Golden J, Pittas A, Fuss P, Cheatham R, et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am J Clin Nutr. 2007;85:1023–30.

    CAS  PubMed  Google Scholar 

  43. Pittas A, Roberts S, Das S, Gilhooly C, Saltzman E, Golden J, et al. The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss. Obesity. 2006;14:2200–6.

    Article  CAS  PubMed  Google Scholar 

  44. Fabricatore A, Wadden T, Ebbeling C, Thomas J, Stallings V, Schwartz S, et al. Targeting dietary fat or glycemic load in the treatment of obesity and type 2 diabetes: a randomized controlled trial. Diabetes Res Clin Pract. 2011;92:37–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Alfenas R, Mattes RD. Influence of glycemic index/load on glycemic response, appetite, and food intake in healthy humans. Diabetes Care. 2005;28:2123–9.

    Article  PubMed  Google Scholar 

  46. Chang K, Lampe J, Schwarz Y, Breymeyer K, Noar K, Song X, et al. Low glycemic load experimental diet more satiating than high glycemic diet. Nutr Cancer. 2012;64:666–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Westerterp-Plantenga M, Lemmens S, Westerterp K. Dietary protein—its role in satiety, energetics, weight loss and health. Br J Nutr. 2012;108:S105–12.

    Article  CAS  PubMed  Google Scholar 

  48. Halton T, Hu F. The effects for high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004;23:373–85.

    Article  PubMed  Google Scholar 

  49. Clifton PM, Keogh J. Metabolic effects of high-protein diets. Curr Atheroscler Rep. 2007;9:472–8.

    Article  CAS  PubMed  Google Scholar 

  50. Westerterp-Plantenga M, Rolland V, Wilson S, Westerterp K. Satiety related to 24 h diet-induced thermogenesis during high protein/carbohydrate vs high fat diets measured in a respiration chamber. Eur J Clin Nutr. 1999;53:495–502.

    Article  CAS  PubMed  Google Scholar 

  51. Paddon-Jones D, Westman E, Mattes RD, Wolfe RP, Astrup A, Westerterp-Plantenga M. Protein, weight management, and satiety. Am J Clin Nutr. 2008;87:1558S–61S.

    CAS  PubMed  Google Scholar 

  52. Wycherley T, Moran L, Clifton PM, Noakes M, Brinkworth G. Effects of energy-restricted high-protein, low-fat compared with standard protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96:1281–98.

    Article  CAS  PubMed  Google Scholar 

  53. Wycherley T, Brinkworth G, Clifton PM, Noakes M. Comparison of the effects of 52 weeks weight loss with either a high-protein or high-carbohydrate diet on body composition and cardiometabolic risk factors in overweight and obese males. Nutr Diabetes. 2012;2:e40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Leidy H, Carnell N, Mattes R, Campbell WW. Higher protein intake preserves lean mass and satiety with weight loss in pre-obese and obese women. Obesity (Silver Spring). 2007;15:421–9.

    Article  CAS  Google Scholar 

  55. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360:859–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Noakes M, Keogh JB, Foster PR, Clifton PM. Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am J Clin Nutr. 2005;81:1298–306.

    CAS  PubMed  Google Scholar 

  57. Brinkworth G, Noakes M, Parker B, Foster PR, Clifton PM. Long-term effects of advice to consume a high-protein, low-fat diet, rather than a conventional weight-loss diet, in obese adults with type 2 diabetes: one-year follow-up of a randomised trial. Diabetologia. 2004;47:1677–86.

    Article  CAS  PubMed  Google Scholar 

  58. Hu F. Dietary patterns analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13:3–9.

    Article  CAS  PubMed  Google Scholar 

  59. National Heart, Lung and Blood Institute. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. U.S. Department of Health and Human Services; 2004.

    Google Scholar 

  60. Sacks F, Obarzanek E, Windhauser M, Svetkey L, Vollmer W, McCullough M, et al. Rationale and design of the dietary approaches to stop hypertension trial (DASH). A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Ann Epidemiol. 2005;5:108–18.

    Article  Google Scholar 

  61. Karanja N, Obarzanek E, Lin P, McCullough M, Phillips K, Swain J, et al. Descriptive characteristics of the dietary patterns used in the dietary approaches to stop hypertension trial. DASH Collaborative Research Group. J Am Diet Assoc. 1999;99:S19–27.

    Article  CAS  PubMed  Google Scholar 

  62. Blumenthal J, Babyak M, Hinderliter A, Watkins L, Craighead L, Lin P, et al. Effect of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure. JAMA. 2010;170:126–35.

    Google Scholar 

  63. Appel LJ, Champagne CM, Harsha D, Cooper L, Obarzanek E, Elmer P, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA. 2003;289:2083–93.

    PubMed  Google Scholar 

  64. Azadbakht L, Mirmiran P, Esmaillzadeh A, Azizi T, Azizi F. Beneficial effects of a dietary approaches to stop hypertension eating plan on features of the metabolic syndrome. Diabetes Care. 2005;28:2823–31.

    Article  CAS  PubMed  Google Scholar 

  65. Ledikwe J, Rolls B, Smiciklas-Wright H, Mitchell D, Ard J, Champagne C, et al. Reduction in dietary energy density are associated with weight loss in overweight and obese participants in the PREMIER trial. Am J Clin Nutr. 2007;85:1212–21.

    CAS  PubMed  Google Scholar 

  66. Rolls BJ, Drewnowski A, Ledikwe JH. Changing the energy density of the diet as a strategy for weight management. J Am Diet Assoc. 2005;105:98–103.

    Article  Google Scholar 

  67. Rolls BJ. The relationship between dietary energy density and energy intake. Physiol Behav. 2009;97:609–15.

    Article  CAS  PubMed  Google Scholar 

  68. Rolls BJ. Plenary lecture 1: dietary strategies for the prevention and treatment of obesity. Proc Nutr Soc. 2010;69:70–9.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Rolls BJ, Roe LS, Meengs JS. Reductions in portion size and energy density of foods are additive and lead to sustained decreases in energy intake. Am J Clin Nutr. 2006;83:11–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Ello-Martin JA, Ledikwe JH, Rolls BJ. The influence of food portion size and energy density on energy intake: implications for weight management. Am J Clin Nutr. 2005;82(Suppl):236S–41S.

    CAS  PubMed  Google Scholar 

  71. Bell EA, Castellanos VH, Pelkman CL, Thorwart ML, Rolls BJ. Energy density of foods affects energy intake in normal-weight women. Am J Clin Nutr. 1998;67:412–20.

    CAS  PubMed  Google Scholar 

  72. Drewnowski A, Almiron-Roig E, Marmonier C, Lluch A. Dietary energy density and body weight: is there a relationship? Nutr Rev. 2004;62:403–13.

    Article  PubMed  Google Scholar 

  73. Perez-Escamilla R, Obbagy JE, Altman JM, Essery EV, McGrane MM, Wong YP, et al. Dietary energy density and body weight in adults and children: a systematic review. J Acad Nutr Diet. 2012;112:671–84.

    Article  PubMed  Google Scholar 

  74. Ello-Martin JA, Roe LS, Ledikwe JH, Beach AM, Rolls BJ. Dietary energy density in the treatment of obesity: a year-long trial comparing 2 weight-loss diets. Am J Clin Nutr. 2007;85:1465–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Kromhout D, Keys A, Aravanis C, Buzina R, Fidanza F, Giampaoli S, et al. Food consumption patterns in the 1960s in seven countries. Am J Clin Nutr. 1989;49:889–94.

    CAS  PubMed  Google Scholar 

  76. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61:1402S–6S.

    CAS  PubMed  Google Scholar 

  77. Romaguera D, Norat T, Vergnaud A, Mouw T, May A, Agudo A, et al. Mediterranean dietary patterns and prospective weight change in participants of the EPIC-PANACEA project. Am J Clin Nutr. 2010;92:912–21.

    Article  CAS  PubMed  Google Scholar 

  78. McManus K, Antinoro L, Sacks F. A randomized controlled trial of a moderate-fat low-energy diet compared with a low fat, low-energy diet for weight loss in overweight adults. Int J Obes. 2001;25:1503–11.

    Article  CAS  Google Scholar 

  79. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women. JAMA. 2003;289:1799–804.

    Article  CAS  PubMed  Google Scholar 

  80. Shai I, Schwarzfuchs D, Henkin Y, Shahar D, Witkow S, Greenberg I, et al. Weight loss in low-carbohydrate, Mediterranean, or low-fat diet. New Engl J Med. 2008;359:229–37.

    Article  CAS  PubMed  Google Scholar 

  81. Esposito K, Kastorini C, Panagiotakos D, Giugliano D. Mediterranean diet and weight loss: meta-analysis of randomized controlled trials. Metab Syndr Relat Disord. 2011;9:1–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hollie A. Raynor Ph.D., R.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raynor, H.A., Looney, S.M. (2014). Dietary Modification as a Weight Management Strategy. In: Kushner, R., Bessesen, D. (eds) Treatment of the Obese Patient. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1203-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1203-2_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1202-5

  • Online ISBN: 978-1-4939-1203-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics