Skip to main content

Cell Proliferation from Regulated to Deregulated States Via Epigenomic Responses

  • Chapter
  • First Online:
Cancer Bioinformatics
  • 2585 Accesses

Abstract

It was established in the previous chapters that cells, under chronic conditions of hypoxia and/or ROS accumulation, must evolve for survival to overcome the pressure created by continuous glycolytic-metabolite accumulation plus possibly other pressures. This leads to continuous synthesis and export of hyaluronic acids in the early stage of a cancer development, as observed in many cancers. The fragments of the hyaluronic acid chains released into the pericellular space immediately become signals for inflammation, cell-cycle activation, cell proliferation, cell survival and angiogenesis, all designed for tissue repair except that no tissue is injured here. These molecules are continuously generated as long as the hypoxic or ROS conditions persist, hence providing driving signals for tissue repair on a continuous basis. In contrast, when a tissue is indeed injured, the hyaluronic acid fragments are released from the damaged underlying ECM rather than from the cells directly, hence the signaling will not continue indefinitely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashley Jr CT, Warren ST (1995) Trinucleotide repeat expansion and human disease. Annual review of genetics 29: 703-728

    Article  Google Scholar 

  • Bernstein C, Prasad AR, Nfonsam V et al. (2013) DNA Damage, DNA Repair and Cancer. New Research Directions in DNA Repair.

    Google Scholar 

  • Bhaskara VK, Mohanam I, Rao JS et al. (2012) Intermittent hypoxia regulates stem-like characteristics and differentiation of neuroblastoma cells. PloS one 7: e30905

    Article  Google Scholar 

  • Buehler MJ (2006) Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences 103: 12285-12290

    Article  Google Scholar 

  • Cai J, Jones DP (1998) Superoxide in Apoptosis MITOCHONDRIAL GENERATION TRIGGERED BY CYTOCHROMEc LOSS. Journal of Biological Chemistry 273: 11401-11404

    Article  Google Scholar 

  • Cavalli-lab (2014) The Polycomb and Trithorax page.

    Google Scholar 

  • Chaudary N, Hill RP (2009) Increased expression of metastasis-related genes in hypoxic cells sorted from cervical and lymph nodal xenograft tumors. Laboratory investigation; a journal of technical methods and pathology 89: 587-596

    Article  Google Scholar 

  • Chen RZ, Pettersson U, Beard C et al. (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395: 89-93

    Article  Google Scholar 

  • Corcos D (2012) Unbalanced replication as a major source of genetic instability in cancer cells. Am J Blood Res 2: 160-169

    Google Scholar 

  • Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22: 4632-4642

    Article  Google Scholar 

  • Ehrlich M (2002) DNA hypomethylation, cancer, the immunodeficiency, centromeric region instability, facial anomalies syndrome and chromosomal rearrangements. J Nutr 132: 2424S-2429S

    Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nature Reviews Cancer 4: 143-153

    Article  Google Scholar 

  • Felsher DW, Zetterberg A, Zhu J et al. (2000) Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts. Proc Natl Acad Sci U S A 97: 10544-10548

    Article  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A et al. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391-400

    Article  Google Scholar 

  • Goelz SE, Vogelstein B, Hamilton SR et al. (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228: 187-190

    Article  Google Scholar 

  • Gorbunova V, Seluanov A, Mittelman D et al. (2004) Genome-wide demethylation destabilizes CTG.CAG trinucleotide repeats in mammalian cells. Hum Mol Genet 13: 2979-2989

    Article  Google Scholar 

  • Guilak F, Cohen DM, Estes BT et al. (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5: 17-26

    Article  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319: 1352-1355

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674

    Article  Google Scholar 

  • Hastings P, Lupski JR, Rosenberg SM et al. (2009) Mechanisms of change in gene copy number. Nature Reviews Genetics 10: 551-564

    Article  Google Scholar 

  • Johnson LJ (2007) The Genome Strikes Back: The Evolutionary Importance of Defence Against Mobile Elements. Evol Biol 34: 121-129

    Article  Google Scholar 

  • Johnson LJ, Tricker PJ (2010) Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity 105: 113-121

    Article  Google Scholar 

  • Jones PA, Laird PW (1999) Cancer-epigenetics comes of age. Nature genetics 21: 163-167

    Article  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Annals of botany 94: 481-495

    Article  Google Scholar 

  • Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Molecular cell 40: 294-309

    Article  Google Scholar 

  • Mason B, Califano J, Reinhart-King C (2012) Matrix Stiffness: A Regulator of Cellular Behavior and Tissue Formation. In: Bhatia SK (ed) Engineering Biomaterials for Regenerative Medicine. Springer New York, pp 19-37

    Chapter  Google Scholar 

  • Mitas M (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Research 25: 2245-2253

    Article  Google Scholar 

  • Muiznieks LD, Keeley FW (2010) Proline periodicity modulates the self-assembly properties of elastin-like polypeptides. J Biol Chem 285: 39779-39789

    Article  Google Scholar 

  • Nakayama M, Gonzalgo ML, Yegnasubramanian S et al. (2004) GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. Journal of Cellular Biochemistry 91: 540-552

    Article  Google Scholar 

  • Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11: 220-228

    Article  Google Scholar 

  • Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer metastasis reviews 29: 351-378

    Article  Google Scholar 

  • Peng YJ, Yuan G, Ramakrishnan D et al. (2006) Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 577: 705-716

    Article  Google Scholar 

  • Qu G-z, Grundy PE, Narayan A et al. (1999) Frequent Hypomethylation in Wilms Tumors of Pericentromeric DNA in Chromosomes 1 and 16. Cancer Genetics and Cytogenetics 109: 34-39

    Article  Google Scholar 

  • Rizwana R, Hahn PJ (1999) CpG methylation reduces genomic instability. J Cell Sci 112 (Pt 24): 4513-4519

    Google Scholar 

  • Robertson KD, Jones PA (2000) DNA methylation: past, present and future directions. Carcinogenesis 21: 461-467

    Article  Google Scholar 

  • Rodriguez J, Frigola J, Vendrell E et al. (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66: 8462-9468

    Article  Google Scholar 

  • Schar P, Fritsch O (2011) DNA repair and the control of DNA methylation. Progress in drug research Fortschritte der Arzneimittelforschung Progres des recherches pharmaceutiques 67: 51-68

    Google Scholar 

  • Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31: 27-36

    Article  Google Scholar 

  • Stern S, Fridmann-Sirkis Y, Braun E et al. (2012) Epigenetically heritable alteration of fly development in response to toxic challenge. Cell Rep 1: 528-542

    Article  Google Scholar 

  • Suzuki K, Suzuki I, Leodolter A et al. (2006) Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 9: 199-207

    Article  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nature reviews Genetics 9: 465-476

    Article  Google Scholar 

  • Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. The oncologist 13 Suppl 3: 21-26

    Article  Google Scholar 

  • Vojta A, Zoldos V (2013) Adaptation or malignant transformation: the two faces of epigenetically mediated response to stress. BioMed research international 2013: 954060

    Article  Google Scholar 

  • Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47: 1394-1400

    Article  Google Scholar 

  • Wimberly H, Shee C, Thornton PC et al. (2013) R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nature communications 4: 2115

    Article  Google Scholar 

  • Yang YJ, Song TY, Park J et al. (2013) Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis 4: e583

    Article  Google Scholar 

  • Yoo KH, Hennighausen L (2012) EZH2 methyltransferase and H3K27 methylation in breast cancer. Int J Biol Sci 8: 59-65

    Article  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine 33: 337-349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Table 9.1

Data set

Cancer types

Sample size

Platform

GSE13195

Gastric cancer

 49

GPL5175

GSE12391

Melanoma

 41

GPL1708

GSE19804

Lung cancer

120

GPL570

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, Y., Cui, J., Puett, D. (2014). Cell Proliferation from Regulated to Deregulated States Via Epigenomic Responses. In: Cancer Bioinformatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1381-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1381-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1380-0

  • Online ISBN: 978-1-4939-1381-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics