Skip to main content

Novel Sperm Tests and Their Importance

  • Chapter
  • First Online:
Non-Invasive Sperm Selection for In Vitro Fertilization

Abstract

Since standard semen analysis is incomplete and does neither provide information about the functional capacity of the male germ cell, nor shows low variability of the individual parameters such a sperm count or motility, scientists were urged to find other solutions to the problem of accurately predicting male fertility. Yet even parameters with a low biological variability like normal sperm morphology or sperm DNA fragmentation do not detect sperm abnormalities in about 20 % of infertile men. Since a high prevalence of idiopathic infertility is observed, some laboratories incorporated advanced sperm tests to determine the functionality of the acrosome, chromatin condensation or DNA fragmentation into andrological diagnostic. Particularly, the latter one together with high resolution morphological analysis (motile sperm organelle morphology examination; MSOME) has been identified as a valuable parameter. Except for MSOME, all other methods used to diagnose the male fertility capacity are consumptive, i.e. spermatozoa are used and by the very nature of the procedures involved are devitalized and therefore not suitable for fertilization anymore. Nevertheless, the progress made in improving, standardizing and validating the methodologies various male fertility parameters including sperm DNA damage, the prediction of male fertility remains controversial and the emphasis for new techniques to predict the male fertility potential is not only on the identification of parameters with low biological variation and the standardization, reliability, repeatability, and validation of the relevant techniques, but also on cost-effectiveness, time consumption as well as the application of non-consumptive tests where the sperm cells can then still be used for insemination purposes. Other novel techniques that have been shown to have significant importance in the diagnosis of sperm fertilizing potential include mitochondrial membrane potential, sperm binding to hyaluronic acid, the determination of reactive oxygen species (ROS), and the total antioxidant capacity (TAC) in the seminal plasma. Furthermore, newly developed techniques that might become important to test male fertility potential are sperm birefringence, proteomics, and genomics using microarrays. Except for the examination of the sperm cells’ birefringence, for which a cutoff value of 20 % spermatozoa showing birefringence has been suggested as indicator for fertility, the other techniques are still in their infancy and need to be developed further. Particularly, specific biomarkers have to be identified and validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cousineau TM, Domar AD. Psychological impact of infertility. Best Pract Res Clin Obstet Gynaecol. 2007;21:293–308.

    PubMed  Google Scholar 

  2. Wright J, Duchesne C, Sabourin S, Bissonnette F, Benoit J, Girard Y. Psychosocial distress and infertility: men and women respond differently. Fertil Steril. 1991;55:100–8.

    CAS  PubMed  Google Scholar 

  3. Carmeli YS, Birenbaum-Carmeli D. The predicament of masculinity: towards understanding the male experience of infertility treatments. Sex Roles. 1994;30:663–77.

    Google Scholar 

  4. Dyer S, Lombard C, Van der Spuy Z. Psychological distress among men suffering from couple infertility in South Africa: a quantitative assessment. Hum Reprod. 2009;24:2821–6.

    PubMed  Google Scholar 

  5. Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22:1506–12.

    PubMed  Google Scholar 

  6. World Health Organization. Towards more objectivity in diagnosis and management of male infertility. Int J Androl. 1987;7(Suppl):1–53.

    Google Scholar 

  7. Bonde JP, Ernst E, Jensen TK, Hjollund NH, Kolstad H, Henriksen TB, Scheike T, Giwercman A, Olsen J, Skakkebaek NE. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet. 1998;352:1172–7.

    CAS  PubMed  Google Scholar 

  8. Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, Carson SA, Cisneros P, Steinkampf MP, Hill JA, Xu D, Vogel DL, National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345:1388–93.

    CAS  PubMed  Google Scholar 

  9. Amann RP, Hammerstedt RH. In vitro evaluation of sperm quality: an opinion. J Androl. 1993;14:397–406.

    CAS  PubMed  Google Scholar 

  10. Henkel R, Maaß G, Bödeker R-H, Scheibelhut C, Stalf T, Mehnert C, Schuppe HC, Jung A, Schill W-B. Sperm function and assisted reproduction technology. Reprod Med Biol. 2005;4:7–30.

    Google Scholar 

  11. de Mouzon J, Goossens V, Bhattacharya S, Castilla JA, Ferraretti AP, Korsak V, Kupka M, Nygren KG, Nyboe Andersen A, European IVF-monitoring (EIM) Consortium, for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Hum Reprod. 2010;25:1851–62.

    PubMed  Google Scholar 

  12. Land JA, Evers JL. Risks and complications in assisted reproduction techniques: report of an ESHRE consensus meeting. Hum Reprod. 2003;18:455–7.

    CAS  PubMed  Google Scholar 

  13. Zini A, Kamal K, Phang D, Willis J, Jarvi K. Biologic variability of sperm DNA denaturation in infertile men. Urology. 2001;58:258–61.

    CAS  PubMed  Google Scholar 

  14. Brugh 3rd VM, Lipshultz LI. Male factor infertility: evaluation and management. Med Clin North Am. 2004;88:367–85.

    PubMed  Google Scholar 

  15. Intasqui P, Camargo M, Del Giudice PT, Spaine DM, Carvalho VM, Cardozo KHM, Zylbersztejn DS, Bertolla RP. Sperm nuclear DNA fragmentation rate is associated with differential protein expression and enriched functions in human seminal plasma. BJU Int. 2013;112:835–43. doi:10.1111/bju.12233.

    CAS  PubMed  Google Scholar 

  16. Lewis SE, John Aitken R, Conner SJ, Iuliis GD, Evenson DP, Henkel R, Giwercman A, Gharagozloo P. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online. 2013;27:325–37. doi:10.1016/j.rbmo.2013.06.014. pii: S1472-6483(13)00363-5.

    CAS  PubMed  Google Scholar 

  17. Setti AS, Paes de Almeida Ferreira Braga D, Iaconelli Jr A, Aoki T, Borges Jr E. Twelve years of MSOME and IMSI: a review. Reprod Biomed Online. 2013;27:338–52.

    PubMed  Google Scholar 

  18. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva, Switzerland: WHO; 2010.

    Google Scholar 

  19. De Jonge C. Semen analysis: looking for an upgrade in class. Fertil Steril. 2012;97:260–6.

    PubMed  Google Scholar 

  20. Practice Committee of American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing. Fertil Steril. 2008;90(5 Suppl):S178–80.

    Google Scholar 

  21. Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;99:673–7.

    Google Scholar 

  22. Lewis SE, Agbaje I, Alvarez J. Sperm DNA tests as useful adjuncts to semen analysis. Syst Biol Reprod Med. 2008;54:111–25.

    CAS  PubMed  Google Scholar 

  23. Ribas-Maynou J, Garcia-Peiro A, Fernandez-Encinas A, Amengual MJ, Prada E, Cortes P, Navarro J, Benet J. Double stranded sperm DNA breaks, measured by Comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS One. 2012;7:e44679.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69:528–32.

    CAS  PubMed  Google Scholar 

  25. Muratori M, Piomboni P, Baldi E, Filimberti E, Pecchioli P, Moretti E, Gambera L, Baccetti B, Biagiotti R, Forti G, Maggi M. Functional and ultrastructural features of DNA-fragmented human sperm. J Androl. 2000;21:903–12.

    CAS  PubMed  Google Scholar 

  26. Cassuto NG, Hazout A, Hammoud I, Balet R, Bouret D, Barak Y, Jellad S, Plouchart JM, Selva J, Yazbeck C. Correlation between DNA defect and sperm-head morphology. Reprod Biomed Online. 2012;24:211–8.

    PubMed  Google Scholar 

  27. Saleh A, Agarwal A, Nelson DR, Nada EA, El-Tonsy MH, Alvarez JG, Thomas AJ, Sharma RK. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78:313–8.

    PubMed  Google Scholar 

  28. Sun JG, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56:602–7.

    CAS  PubMed  Google Scholar 

  29. Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, Guerin JF. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18:1023–8.

    PubMed  Google Scholar 

  30. Huang CC, Lin DP, Tsao HM, Cheng TC, Liu CH, Lee MS. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005;84:130–40.

    PubMed  Google Scholar 

  31. Henkel R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Gips H, Schill W-B, Kruger TF. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81:965–72.

    CAS  PubMed  Google Scholar 

  32. Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, Coticchio G. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21:2876–81.

    CAS  PubMed  Google Scholar 

  33. Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Guerin JF. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87:93–100.

    CAS  PubMed  Google Scholar 

  34. Li Z, Wang L, Cai J, Huang H. Correlation of sperm DNA damage with IVF and ICSI outcomes: a systematic review and meta-analysis. J Assist Reprod Genet. 2006;23:367–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.

    CAS  PubMed  Google Scholar 

  36. Henkel R, Kierspel E, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Schill WB, Kruger TF. DNA fragmentation of spermatozoa and assisted reproduction technology. RBM Online. 2003;7(Comp 1):44–51.

    Google Scholar 

  37. Tarozzi N, Nadalini M, Stronati A, Bizzaro D, Dal Prato L, Coticchio G, Borini A. Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online. 2009;18:486–95.

    PubMed  Google Scholar 

  38. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57:78–85.

    PubMed  Google Scholar 

  39. Gandini L, Lombardo F, Paoli D, Caruso F, Eleuteri P, Leter G, Ciriminna R, Culasso F, Dondero F, Lenzi A, Spano M. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19:1409–17.

    CAS  PubMed  Google Scholar 

  40. Henkel R, Bastiaan HS, Schuller S, Hoppe I, Starker W, Menkveld R. Leukocytes and intrinsic ROS production may be factors compromising sperm chromatin condensation status. Andrologia. 2010;42:69–75.

    CAS  PubMed  Google Scholar 

  41. Wilding M, Coppola G, di Matteo L, Palagiano A, Fusco E, Dale B. Intracytoplasmic injection of morphologically selected spermatozoa (IMSI) improves outcome after assisted reproduction by deselecting physiologically poor quality spermatozoa. J Assist Reprod Genet. 2011;28:253–62.

    PubMed Central  PubMed  Google Scholar 

  42. Utsuno H, Oka K, Yamamoto A, Shiozawa T. Evaluation of sperm head shape at high magnification revealed correlation of sperm DNA fragmentation with aberrant head ellipticity and angularity. Fertil Steril. 2013;99:1573–80.

    PubMed  Google Scholar 

  43. Ahmadi A, Ng SC. Developmental capacity of damaged spermatozoa. Hum Reprod. 1999;14:2279–85.

    CAS  PubMed  Google Scholar 

  44. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.

    CAS  PubMed  Google Scholar 

  45. Lathi RB, Milki AA. Rate of aneuploidy in miscarriages following in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2004;81:1270–2.

    PubMed  Google Scholar 

  46. Barroso G, Valdespin C, Vega E, Kershenovich R, Avila R, Avendano C, Oehninger S. Developmental sperm contributions: fertilization and beyond. Fertil Steril. 2009;92:835–48.

    CAS  PubMed  Google Scholar 

  47. Funke S, Flach E, Kiss I, Sandor J, Vida G, Bodis J, Ertl T. Male reproductive tract abnormalities: more common after assisted reproduction? Early Hum Dev. 2010;86:547–50.

    PubMed  Google Scholar 

  48. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, Kirkman-Brown J, Coomarasamy A. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27:2908–17.

    CAS  PubMed  Google Scholar 

  49. Zwink N, Jenetzky E, Schmiedeke E, Schmidt D, Märzheuser S, Grasshoff-Derr S, Holland-Cunz S, Weih S, Hosie S, Reifferscheid P, Ameis H, Kujath C, Rissmann A, Obermayr F, Schwarzer N, Bartels E, Reutter H, Brenner H, CURE-Net Consortium. Assisted reproductive techniques and the risk of anorectal malformations: a German case-control study. Orphanet J Rare Dis. 2012;7:65.

    PubMed Central  PubMed  Google Scholar 

  50. Tesarik J. Paternal effects on cell division in the human preimplantation embryo. Reprod Biomed Online. 2005;10:370–5.

    PubMed  Google Scholar 

  51. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14:727–33.

    CAS  PubMed  Google Scholar 

  52. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.

    CAS  PubMed  Google Scholar 

  53. Velez de la Calle JF, Muller A, Walschaerts M, Clavere JL, Jimenez C, Wittemer C, Thonneau P. Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril. 2008;90:1792–9.

    PubMed  Google Scholar 

  54. Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76:1380–6.

    PubMed  Google Scholar 

  55. Ribas-Maynou J, Garcia-Peiro A, Fernandez-Encinas A, Abad C, Amengual MJ, Prada E, Navarro J, Benet J. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay. Andrology. 2013;1:715–22.

    CAS  PubMed  Google Scholar 

  56. Henkel R, Hoogendijk CF, Bouic PJ, Kruger TF. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia. 2010;42:305–13.

    PubMed  Google Scholar 

  57. Mitchell LA, De Iuliis GN, Aitken RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl. 2011;34:2–13.

    CAS  PubMed  Google Scholar 

  58. Von Sonntag C. The chemical basis of radiation biology. London, UK: Taylor and Francis; 1987.

    Google Scholar 

  59. Floyd RA. The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis. 1990;11:1447–50.

    CAS  PubMed  Google Scholar 

  60. Shibutani S, Takeshita M, Grollman AP. Insertion of specific base during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991;349:431–4.

    CAS  PubMed  Google Scholar 

  61. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25:2415–26.

    CAS  PubMed  Google Scholar 

  62. Ni ZY, Liu YQ, Shen HM, Chia SE, Ong CN. Does the increase of 8-hydroxydeoxyguanosine lead to poor sperm quality? Mutat Res. 1997;381:77–82.

    CAS  PubMed  Google Scholar 

  63. Kao SH, Chao HT, Chen HW, Hwang TI, Liao TL, Wei YH. Increase of oxidative stress in human sperm with lower motility. Fertil Steril. 2008;89:1183–90.

    CAS  PubMed  Google Scholar 

  64. Shen H, Ong C. Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radic Biol Med. 2000;28:529–36.

    CAS  PubMed  Google Scholar 

  65. Thomson LK, Zieschang JA, Clark AM. Oxidative deoxyribonucleic acid damage in sperm has a negative impact on clinical pregnancy rate in intrauterine insemination but not intracytoplasmic sperm injection cycles. Fertil Steril. 2011;96:843–7.

    CAS  PubMed  Google Scholar 

  66. Cambi M, Tamburrino L, Marchiani S, Olivito B, Azzari C, Forti G, Baldi E, Muratori M. Development of a specific method to evaluate 8-hydroxy, 2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction. 2013;45:227–35.

    Google Scholar 

  67. Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis: an Update. Apoptosis. 2003;8:115–20.

    CAS  PubMed  Google Scholar 

  68. Lopez-Mediavilla C, Orfao A, Gonzalez M, Medina JM. Identification by flow cytometry of two distinct rhodamine-123-stained mitochondrial populations in rat liver. FEBS Lett. 1989;254:115–20.

    CAS  PubMed  Google Scholar 

  69. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997;411:77–82.

    CAS  PubMed  Google Scholar 

  70. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum Reprod. 2004;19:2267–76.

    PubMed  Google Scholar 

  71. Troiano L, Granata AR, Cossarizza A, Kalashnikova G, Bianchi R, Pini G, Tropea F, Carani C, Franceschi C. Mitochondrial membrane potential and DNA stainability in human sperm cells: a flow cytometry analysis with implications for male infertility. Exp Cell Res. 1998;241:384–93.

    CAS  PubMed  Google Scholar 

  72. Donnelly ET, O’Connell M, McClure N, Lewis SE. Differences in nuclear DNA fragmentation and mitochondrial integrity of semen and prepared human spermatozoa. Hum Reprod. 2000;15:1552–61.

    CAS  PubMed  Google Scholar 

  73. Wang X, Sharma RK, Gupta A, George V, Thomas AJ, Falcone T, Agarwal A. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril. 2003;80 Suppl 2:844–50.

    PubMed  Google Scholar 

  74. Marchetti C, Gallego MA, Defossez A, Formstecher P, Marchetti P. Staining of human sperm with fluorochrome-labeled inhibitor of caspases to detect activated caspases: correlation with apoptosis and sperm parameters. Hum Reprod. 2004;19:1127–34.

    CAS  PubMed  Google Scholar 

  75. Lee TH, Liu CH, Shih YT, Tsao HM, Huang CC, Chen HH, Lee MS. Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod. 2010;25:839–46.

    CAS  PubMed  Google Scholar 

  76. Kasai T, Ogawa K, Mizuno K, Nagai S, Uchida Y, Ohta S, Fujie M, Suzuki K, Hirata S, Hoshi K. Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian J Androl. 2002;4:97–103.

    PubMed  Google Scholar 

  77. Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod. 2002;17:1257–65.

    PubMed  Google Scholar 

  78. Marchetti P, Ballot C, Jouy N, Thomas P, Marchetti C. Influence of mitochondrial membrane potential of spermatozoa on in vitro fertilisation outcome. Andrologia. 2012;44:136–41.

    CAS  PubMed  Google Scholar 

  79. Zorn B, Golob B, Ihan A, Kopitar A, Kolbezen M. Apoptotic sperm biomarkers and their correlation with conventional sperm parameters and male fertility potential. J Assist Reprod Genet. 2012;29:357–64.

    PubMed Central  PubMed  Google Scholar 

  80. Kim E, Yamashita M, Kimura M, Honda A, Kashiwabara S, Baba T. Sperm penetration through cumulus mass and zona pellucida. Int J Dev Biol. 2008;52:677–82.

    CAS  PubMed  Google Scholar 

  81. Ranganathan S, Ganguly AK, Datta K. Evidence for presence of hyaluron binding protein on spermatozoa and its possible involvement in sperm function. Mol Reprod Dev. 1994;38:69–76.

    CAS  PubMed  Google Scholar 

  82. Huszar G, Ozenci CC, Cayli S, Zavaczki Z, Hansch E, Vigue L. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril. 2003;79 Suppl 3:1616–24.

    PubMed  Google Scholar 

  83. Jakab A, Sakkas D, Delpiano E, Cayli S, Kovanci E, Ward D, Ravelli A, Huszar G. Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil Steril. 2005;84:1665–73.

    PubMed  Google Scholar 

  84. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M. “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93:598–604.

    PubMed  Google Scholar 

  85. Yagci A, Murk W, Stronk J, Huszar G. Spermatozoa bound to solid state hyaluronic acid show chromatin structure with high DNA chain integrity: an acridine orange fluorescence study. J Androl. 2010;31:566–72.

    CAS  PubMed  Google Scholar 

  86. Sati L, Cayli S, Delpiano E, Sakkas D, Huszar G. The pattern of tyrosine phosphorylation in human sperm in response to binding to zona pellucida or hyaluronic acid. Reprod Sci. 2013;21:573–81.

    PubMed  Google Scholar 

  87. Nasr-Esfahani MH, Razavi S, Vahdati AA, Fathi F, Tavalaee M. Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. J Assist Reprod Genet. 2008;25:197–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Parmegiani L, Cognigni GE, Ciampaglia W, Pocognoli P, Marchi F, Filicori M. Efficiency of hyaluronic acid (HA) sperm selection. J Assist Reprod Genet. 2010;27:13–6.

    PubMed Central  PubMed  Google Scholar 

  89. Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, Ivani K, Khoury C, Ball GD, Elliot T, Lieberman J. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes–multicenter, double-blinded and randomized controlled trial. Hum Reprod. 2013;28:306–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Van Den Bergh MJ, Fahy-Deshe M, Hohl MK. Pronuclear zygote score following intracytoplasmic injection of hyaluronan-bound spermatozoa: a prospective randomized study. Reprod Biomed Online. 2009;19:796–801.

    Google Scholar 

  91. Parmegiani L, Cognigni GE, Filicori M. Risks in injecting hyaluronic acid non-bound spermatozoa. Reprod Biomed Online. 2010;20:437–8.

    CAS  PubMed  Google Scholar 

  92. Lazarevic J, Wikarczuk M, Somkuti SG, Barmat LI, Schinfeld JS, Smith SE. Hyaluronan binding assay (HBA) vs. sperm penetration assay (SPA): can HBA replace the SPA test in male partner screening before in vitro fertilization? J Exp Clin Assist Reprod. 2010;7:2.

    PubMed Central  PubMed  Google Scholar 

  93. Boynukalin FK, Esinler I, Guven S, Gunalp S. Hyaluronan binding assay does not predict pregnancy rates in IUI cycles in couples with unexplained infertility. Arch Gynecol Obstet. 2012;286:1577–80.

    CAS  PubMed  Google Scholar 

  94. Kovacs P, Kovats T, Sajgo A, Szollosi J, Matyas S, Kaali SG. The role of hyaluronic acid binding assay in choosing the fertilization method for patients undergoing IVF for unexplained infertility. J Assist Reprod Genet. 2011;28:49–54.

    PubMed Central  PubMed  Google Scholar 

  95. Nijs M, Creemers E, Cox A, Janssen M, Vanheusden E, Van der Elst J, Ombelet W. Relationship between hyaluronic acid binding assay and outcome in ART: a pilot study. Andrologia. 2010;42:291–6.

    PubMed  Google Scholar 

  96. Hong SJ, Chiu PC, Lee KF, Tse JY, Ho PC, Yeung WS. Cumulus cells and their extracellular matrix affect the quality of the spermatozoa penetrating the cumulus mass. Fertil Steril. 2009;92:971–8.

    PubMed  Google Scholar 

  97. Yeung WS, Lee KF, Koistinen R, Koistinen H, Seppälä M, Chiu PC. Effects of glycodelins on functional competence of spermatozoa. J Reprod Immunol. 2009;83:26–30.

    CAS  PubMed  Google Scholar 

  98. Menkveld R. Clinical significance of the low normal sperm morphology value as proposed in the fifth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen. Asian J Androl. 2010;12:47–58.

    PubMed Central  PubMed  Google Scholar 

  99. Menkveld R, Holleboom CA, Rhemrev JP. Measurement and significance of sperm morphology. Asian J Androl. 2011;13:59–68.

    PubMed Central  PubMed  Google Scholar 

  100. Abu Hassan Abu D, Franken DR, Hoffman B, Henkel R. Accurate sperm morphology assessment predicts sperm function. Andrologia. 2012;44 Suppl 1:571–7.

    PubMed  Google Scholar 

  101. Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl. 2002;23:1–8.

    PubMed  Google Scholar 

  102. Franco Jr JG, Mauri AL, Petersen CG, Massaro FC, Silva LF, Felipe V, Cavagna M, Pontes A, Baruffi RL, Oliveira JB, Vagnini LD. Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int J Androl. 2012;35:46–51.

    PubMed  Google Scholar 

  103. Oliveira JB, Massaro FC, Mauri AL, Petersen CG, Nicoletti AP, Baruffi RL, Franco Jr JG. Motile sperm organelle morphology examination is stricter than Tygerberg criteria. Reprod Biomed Online. 2009;18:320–6.

    CAS  PubMed  Google Scholar 

  104. Montjean D, Belloc S, Benkhalifa M, Dalleac A, Menezo Y. Sperm vacuoles are linked to capacitation and acrosomal status. Hum Reprod. 2012;27:2927–32.

    CAS  PubMed  Google Scholar 

  105. Hammoud I, Boitrelle F, Ferfouri F, Vialard F, Bergere M, Wainer B, Bailly M, Albert M, Selva J. Selection of normal spermatozoa with a vacuole-free head (x6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates. Andrologia. 2013;45:163–70.

    CAS  PubMed  Google Scholar 

  106. Maettner R, Sterzik K, Isachenko V, Strehler E, Rahimi G, Alabart JL, Sánchez R, Mallmann P, Isachenko E. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity. Andrologia. 2013;46:547–55. doi:10.1111/and.12114.

    PubMed  Google Scholar 

  107. Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, Artzi S, Gross M, Barak Y. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80:1413–9.

    PubMed  Google Scholar 

  108. Hazout A, Dumont-Hassan M, Junca AM, Cohen Bacrie P, Tesarik J. High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online. 2006;12:19–25.

    PubMed  Google Scholar 

  109. Souza Setti A, Ferreira RC, de Almeida P, Ferreira Braga D, de Cassia Savio Figueira R, Iaconelli Jr A, Borges Jr E. Intracytoplasmic sperm injection outcome versus intracytoplasmic morphologically selected sperm injection outcome: a meta-analysis. Reprod Biomed Online. 2010;21:450–5.

    PubMed  Google Scholar 

  110. Balaban B, Yakin K, Alatas C, Oktem O, Isiklar A, Urman B. Clinical outcome of intracytoplasmic injection of spermatozoa morphologically selected under high magnification: a prospective randomized study. Reprod Biomed Online. 2011;22:472–6.

    Google Scholar 

  111. de Cassia Savio Figueira R, Braga DP, Setti AS, Iaconelli Jr A, Borges Jr E. Morphological nuclear integrity of sperm cells is associated with preimplantation genetic aneuploidy screening cycle outcomes. Fertil Steril. 2011;95:990–3.

    Google Scholar 

  112. Oliveira JB, Massaro FC, Baruffi RL, Mauri AL, Petersen CG, Silva LF, Vagnini LD, Franco Jr JG. Correlation between semen analysis by motile sperm organelle morphology examination and sperm DNA damage. Fertil Steril. 2010;94:1937–40.

    CAS  PubMed  Google Scholar 

  113. Watanabe S, Tanaka A, Fujii S, Mizunuma H, Fukui A, Fukuhara R, Nakamura R, Yamada K, Tanaka I, Awata S, Nagayoshi M. An investigation of the potential effect of vacuoles in human sperm on DNA damage using a chromosome assay and the TUNEL assay. Hum Reprod. 2011;26:978–86.

    CAS  PubMed  Google Scholar 

  114. Tanaka A, Nagayoshi M, Tanaka I, Kusunoki H. Human sperm head vacuoles are physiological structures formed during the sperm development and maturation process. Fertil Steril. 2012;98:315–20.

    PubMed  Google Scholar 

  115. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendon; 1989.

    Google Scholar 

  116. Henkel R. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13:43–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. De Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14:157–66.

    PubMed  Google Scholar 

  118. de Lamirande E, Gagnon C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl. 1993;16:21–5.

    PubMed  Google Scholar 

  119. Stauss CR, Votta TJ, Suarez SS. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol Reprod. 1995;53:1280–5.

    CAS  PubMed  Google Scholar 

  120. Dorval V, Dufour M, Leclerc P. Role of protein tyrosine phosphorylation in the thapsigargin-induced intracellular Ca2+ store depletion during human sperm acrosome reaction. Mol Hum Reprod. 2003;9:125–31.

    CAS  PubMed  Google Scholar 

  121. O’Flaherty C, de Lamirande E, Gagnon C. Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radic Biol Med. 2006;40:1045–55.

    PubMed  Google Scholar 

  122. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–5.

    CAS  PubMed  Google Scholar 

  123. Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998;59:1037–46.

    CAS  PubMed  Google Scholar 

  124. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95:503–7.

    CAS  PubMed  Google Scholar 

  125. Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250:66–9.

    CAS  PubMed  Google Scholar 

  126. Chow CK. Vitamin E and oxidative stress. Free Radic Biol Med. 1991;11:215–32.

    CAS  PubMed  Google Scholar 

  127. Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr. 1991;54:1119S–24.

    CAS  PubMed  Google Scholar 

  128. Kobayashi T, Miyazaki T, Natori M, Nozawa S. Protective role of superoxide dismutase in human sperm motility: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum Reprod. 1991;6:987–91.

    CAS  PubMed  Google Scholar 

  129. Li TK. The glutathione and thiol content of mammalian spermatozoa and seminal plasma. Biol Reprod. 1975;12:641–6.

    CAS  PubMed  Google Scholar 

  130. Drevet JR. The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol. 2006;250:70–9.

    CAS  PubMed  Google Scholar 

  131. Grootveldt M, Halliwell B. Measurement of allantoin and uric acid in human body fluids. Biochem J. 1987;242:803–8.

    Google Scholar 

  132. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero Jr RA. The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A. 1998;95:11140–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Paszkowski T, Traub AI, Robinson SY, McMaster D. Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta. 1995;236:173–80.

    CAS  PubMed  Google Scholar 

  134. Knapen MF, Zusterzeel PL, Peters WH, Steegers EA. Glutathione and glutathione-related enzymes in reproduction. A review. Eur J Obstet Gynecol Reprod Biol. 1999;82:171–84.

    CAS  PubMed  Google Scholar 

  135. Oyawoye O, Abdel Gadir A, Garner A, Constantinovici N, Perrett C, Hardiman P. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod. 2003;18:2270–4.

    CAS  PubMed  Google Scholar 

  136. Gupta S, Surti N, Metterle L, Chandra A, Agarwal A. Antioxidants and female reproductive pathologies. Arch Med Sci. 2009;5(1A):S151–73.

    CAS  Google Scholar 

  137. Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays. 1994;16:259–67.

    CAS  PubMed  Google Scholar 

  138. Kothari S, Thompson A, Agarwal A, du Plessis S. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48:425–35.

    CAS  PubMed  Google Scholar 

  139. Brewer A, Banerjee Mustafi S, Murray TV, Namakkal Soorappan R, Benjamin I. Reductive stress linked to small HSPs, G6PD and NRF2 pathways in heart disease. Antioxid Redox Signal. 2013;18:1114–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57:409–16.

    CAS  PubMed  Google Scholar 

  141. Lewis SEM, Boyle PM, McKinney KA, Young IS, Thompson W. Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril. 1995;64:868–70.

    CAS  PubMed  Google Scholar 

  142. Mahfouz R, Sharma R, Sharma D, Sabanegh E, Agarwal A. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril. 2009;91:805–11.

    PubMed  Google Scholar 

  143. Aitken RJ, Buckingham DW, West KM. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. J Cell Physiol. 1992;151:466–77.

    CAS  PubMed  Google Scholar 

  144. McNally JA, Bell AL. Myeloperoxidase-based chemiluminescence of polymorphonuclear leukocytes and monocytes. J Biolumin Chemilumin. 1996;11:99–106.

    CAS  PubMed  Google Scholar 

  145. Oldenburg B, van Kats-Renaud H, Koningsberger JC, van Berge Henegouwen GP, van Asbeck BS. Chemiluminescence in inflammatory bowel disease patients: a parameter of inflammatory activity. Clin Chim Acta. 2001;310:151–6.

    CAS  PubMed  Google Scholar 

  146. Nemeth K, Furesz J, Csikor K, Schweitzer K, Lakatos S. Luminol-dependent chemiluminescence is related to the extracellularly released reactive oxygen intermediates in the case of rat neutrophils activated by formyl-methionyl-leucyl-phenylalanine. Haematologia. 2002;31:277–85.

    CAS  PubMed  Google Scholar 

  147. McKinney KA, Lewis SEM, Thompson W. Reactive oxygen species generation in human sperm: luminol and lucigenin chemiluminescence probes. Arch Androl. 1996;36:119–25.

    CAS  PubMed  Google Scholar 

  148. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York, NY: Oxford University Press; 1999.

    Google Scholar 

  149. Myhre O, Andersen JM, Aarnes H, Fonnum F. Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol. 2003;65:1575–82.

    CAS  PubMed  Google Scholar 

  150. Zalata A, Hafez T, Comhaire F. Evaluation of the role of reactive oxygen species in male infertility. Hum Reprod. 1995;10:1444–51.

    CAS  PubMed  Google Scholar 

  151. Alkan I, Simsek F, Haklar G, Kervancioglu E, Ozveri H, Yalcin S, Akdas A. Reactive oxygen species production by the spermatozoa of patients with idiopathic infertility: relationship to seminal plasma antioxidants. J Urol. 1997;157:140–3.

    CAS  PubMed  Google Scholar 

  152. Said TM, Agarwal A, Sharma RK, Mascha E, Sikka SC, Thomas Jr AJ. Human sperm superoxide anion generation and correlation with semen quality in patients with male infertility. Fertil Steril. 2004;82:871–7.

    CAS  PubMed  Google Scholar 

  153. Venkatesh S, Shamsi MB, Dudeja S, Kumar R, Dada R. Reactive oxygen species measurement in neat and washed semen: comparative analysis and its significance in male infertility assessment. Arch Gynecol Obstet. 2011;283:121–6.

    CAS  PubMed  Google Scholar 

  154. Henkel R, Schill WB. Sperm separation in patients with urogenital infections. Andrologia. 1998;30 Suppl 1:91–7.

    PubMed  Google Scholar 

  155. Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003;26:279–85.

    CAS  PubMed  Google Scholar 

  156. Yeung CH, De Geyter C, De Geyter M, Nieschlag E. Production of reactive oxygen species by and hydrogen peroxide scavenging activity of spermatozoa in an IVF program. J Assist Reprod Genet. 1996;13:495–500.

    CAS  PubMed  Google Scholar 

  157. Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998;44(6 Pt 1):1309–15.

    CAS  PubMed  Google Scholar 

  158. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70–6.

    CAS  PubMed  Google Scholar 

  159. Glazer AN. Phycoerythrin fluorescence-based assay for reactive oxygen species. Methods Enzymol. 1990;186:161–8.

    CAS  PubMed  Google Scholar 

  160. Whitehead TP, Thorpe GHG, Maxwell SRJ. Enhanced chemiluminescent assay for antioxidant capacity in biological fluids. Anal Chim Acta. 1992;266:265–77.

    CAS  Google Scholar 

  161. Kolettis PN, Sharma RK, Pasqualotto FF, Nelson D, Thomas Jr AJ, Agarwal A. Effect of seminal oxidative stress on fertility after vasectomy reversal. Fertil Steril. 1999;71:249–55.

    CAS  PubMed  Google Scholar 

  162. Sharma RK, Pasqualotto AE, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22:575–83.

    CAS  PubMed  Google Scholar 

  163. Milner NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci. 1993;84:407–12.

    PubMed  Google Scholar 

  164. Said TM, Kattal N, Sharma RK, Sikka SC, Thomas Jr AJ, Mascha E, Agarwal A. Enhanced chemiluminescence assay vs colorimetric assay for measurement of the total antioxidant capacity of human seminal plasma. J Androl. 2003;24:676–80.

    CAS  PubMed  Google Scholar 

  165. Pahune PP, Choudhari AR, Muley PA. The total antioxidant power of semen and its correlation with the fertility potential of human male subjects. J Clin Diagn Res. 2013;7:991–5.

    PubMed Central  PubMed  Google Scholar 

  166. Mancini A, Festa R, Silvestrini A, Nicolotti N, Di Donna V, La Torre G, Pontecorvi A, Meucci E. Hormonal regulation of total antioxidant capacity in seminal plasma. J Androl. 2009;30:534–40.

    CAS  PubMed  Google Scholar 

  167. Baccetti B. Microscopical advances in assisted reproduction. J Submicrosc Cytol Pathol. 2004;36:333–9.

    CAS  PubMed  Google Scholar 

  168. Gianaroli L, Magli MC, Collodel G, Moretti E, Ferraretti AP, Baccetti B. Sperm head’s birefringence: a new criterion for sperm selection. Fertil Steril. 2008;90:104–12.

    PubMed  Google Scholar 

  169. Gianaroli L, Magli MC, Ferraretti AP, Crippa A, Lappi M, Capitani S, Baccetti B. Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection. Fertil Steril. 2010;93:807–13.

    PubMed  Google Scholar 

  170. Magli MC, Crippa A, Muzii L, Boudjema E, Capoti A, Scaravelli G, Ferraretti AP, Gianaroli L. Head birefringence properties are associated with acrosome reaction, sperm motility and morphology. Reprod Biomed Online. 2012;24:352–9.

    CAS  PubMed  Google Scholar 

  171. Collodel G, Federico MG, Pascarelli NA, Geminiani M, Moretti E. Natural sperm birefringence can be used to estimate sperm viability and morphology. Syst Biol Reprod Med. 2010;56:465–72.

    PubMed  Google Scholar 

  172. Collodel G, Iacoponi F, Mazzi L, Terzuoli G, Pascarelli NA, Moretti E. Light, polarizing, and transmission electron microscopy: three methods for the evaluation of sperm quality. Syst Biol Reprod Med. 2013;59:27–33.

    PubMed  Google Scholar 

  173. Baccetti B, Mirolli M. Notulae seminologicae. 3. Mathematical diagnosis from TEM seminological detection. Andrologia. 1994;26:47–9.

    CAS  PubMed  Google Scholar 

  174. Petersen CG, Vagnini LD, Mauri AL, Massaro FC, Cavagna M, Baruffi RL, Oliveira JB, Franco Jr JG. Relationship between DNA damage and sperm head birefringence. Reprod Biomed Online. 2011;22:583–9.

    CAS  PubMed  Google Scholar 

  175. Vagnini LD, Petersen CG, Mauri AL, Massaro FC, Junta CM, Silva LFI, Nicoletti APM, Cavagna M, Pontes A, Baruffi RLR, Oliveira JBA, Franco Jr JG. Can sperm-head birefringence indicate sperm chromatin-packaging abnormalities? Hum Reprod. 2010;25 Suppl 1:i279.

    Google Scholar 

  176. Merriam-Webster (2013); Merriam-Webster dictionary. Accessed on 18 November 2013 (http://www.merriam-webster.com/dictionary/biomarker)

  177. Kovac JR, Pastuszak AW, Lamb DJ. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril. 2013;99:998–1007.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. James P. Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys. 1997;30:279–331.

    CAS  PubMed  Google Scholar 

  179. Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999;17:121–7.

    CAS  PubMed  Google Scholar 

  180. Drabovich AP, Jarvi K, Diamandis EP. Verification of male infertility biomarkers in seminal plasma by multiplex selected reaction monitoring assay. Mol Cell Proteomics. 2011;10:M110.004127.

    PubMed Central  PubMed  Google Scholar 

  181. Milardi D, Grande G, Vincenzoni F, Messana I, Pontecorvi A, De Marinis L, Castagnola M, Marana R. Proteomic approach in the identification of fertility pattern in seminal plasma of fertile men. Fertil Steril. 2012;97:67–73.

    CAS  PubMed  Google Scholar 

  182. Krause W, Rothauge C-F. Andrologie, Krankheiten der männlichen Geschlechtsorgane. 2nd ed. Stuttgart: Ferdinand Enke Verlag; 1991.

    Google Scholar 

  183. Kovac JR, Flood D, Mullen JB, Fischer MA. Diagnosis and treatment of azoospermia resulting from testicular sarcoidosis. J Androl. 2012;33:162–6.

    CAS  PubMed  Google Scholar 

  184. Duncan MW, Thompson HS. Proteomics of semen and its constituents. Proteomics Clin Appl. 2007;1:861–75.

    CAS  PubMed  Google Scholar 

  185. Henkel R. Ejakulat. In: Krause W, Weidner W, Diemer T, Sperling H, editors. Andrologie - Krankheiten der männlichen Geschlechtsorgane. 4th ed. Stuttgart, Germany: Georg Thieme Verlag; 2011. p. 27–40.

    Google Scholar 

  186. Aumüller G, Riva A. Morphology and functions of the human seminal vesicle. Andrologia. 1992;24:183–96.

    PubMed  Google Scholar 

  187. Kelly VC, Kuy S, Palmer DJ, Xu Z, Davis SR, Cooper GJ. Characterization of bovine seminal plasma by proteomics. Proteomics. 2006;6:5826–33.

    CAS  PubMed  Google Scholar 

  188. Pilch B, Mann M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 2006;7:R40–9.

    PubMed Central  PubMed  Google Scholar 

  189. Batruch I, Lecker I, Kagedan D, Smith CR, Mullen BJ, Grober E, Lo KC, Diamandis EP, Jarvi KA. Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res. 2011;10:941–53.

    CAS  PubMed  Google Scholar 

  190. Rolland AD, Lavigne R, Dauly C, Calvel P, Kervarrec C, Freour T, Evrard B, Rioux-Leclercq N, Auger J, Pineau C. Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum Reprod. 2013;28:199–209.

    CAS  PubMed  Google Scholar 

  191. Henkel R. Sperm preparation: state-of-the-art—physiological aspects and application of advanced sperm preparation methods. Asian J Androl. 2012;14:260–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Rodriguez-Martinez H, Larsson B, Pertoft H. Evaluation of sperm damage and techniques for sperm clean-up. Reprod Fertil Dev. 1997;9:297–308.

    CAS  PubMed  Google Scholar 

  193. Johnston DS, Wooters J, Kopf GS, Qiu Y, Roberts KP. Analysis of the human sperm proteome. Ann N Y Acad Sci. 2005;1061:190–202.

    CAS  PubMed  Google Scholar 

  194. Wang G, Guo Y, Zhou T, Shi X, Yu J, Yang Y, Wu Y, Wang J, Liu M, Chen X, Tu W, Zeng Y, Jiang M, Li S, Zhang P, Zhou Q, Zheng B, Yu C, Zhou Z, Guo X, Sha J. In-depth proteomic analysis of the human sperm reveals complex protein compositions. J Proteomics. 2013;79:114–22.

    CAS  PubMed  Google Scholar 

  195. Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update. 2013;20:40–62.

    PubMed  Google Scholar 

  196. Ashrafzadeh A, Karsani SA, Nathan S. Mammalian sperm fertility related proteins. Int J Med Sci. 2013;10:1649–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Xu W, Hu H, Wang Z, Chen X, Yang F, Zhu Z, Fang P, Dai J, Wang L, Shi H, Li Z, Qiao Z. Proteomic characteristics of spermatozoa in normozoospermic patients with infertility. J Proteomics. 2012;75:5426–36.

    CAS  PubMed  Google Scholar 

  198. Hamada A, Sharma R, du Plessis SS, Willard B, Yadav SP, Sabanegh E, Agarwal A. Two-dimensional differential in-gel electrophoresis-based proteomics of male gametes in relation to oxidative stress. Fertil Steril. 2013;99:1216–1226.e2. doi:10.1016/j.fertnstert.2012.11.046. pii: S0015-0282(12)02458-2.

    CAS  PubMed  Google Scholar 

  199. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14:734–45.

    CAS  PubMed  Google Scholar 

  200. Reijo R, Lee TY, Salo P, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O, de la Chapelle A, Silber S, Page DC. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA − binding protein gene. Nat Genet. 1995;10:383–93.

    CAS  PubMed  Google Scholar 

  201. Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med. 2008;14:1197–213.

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Lehmann KJ, Kovac JR, Xu J, Fischer MA. Isodicentric Yq mosaicism presenting as infertility and maturation arrest without altered SRY and AZF regions. J Assist Reprod Genet. 2012;29:939–42.

    PubMed Central  PubMed  Google Scholar 

  203. Park JH, Lee HC, Jeong YM, Chung TG, Kim HJ, Kim NK, Lee SH, Lee S. MTHFR C677T polymorphism associates with unexplained infertile male factors. J Assist Reprod Genet. 2005;22:361–8.

    PubMed  Google Scholar 

  204. Lee HC, Jeong YM, Lee SH, Cha KY, Song SH, Kim NK, Lee KW, Lee S. Association study of four polymorphisms in three folate-related enzyme genes with non-obstructive male infertility. Hum Reprod. 2006;21:3162–70.

    CAS  PubMed  Google Scholar 

  205. Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360:772–7.

    CAS  PubMed  Google Scholar 

  206. Wang H, Zhou Z, Xu LJ, Xiao J, Xu ZY, Sha J. A spermatogenesis-related gene expression profile in human spermatozoa and its potential clinical applications. J Mol Med. 2004;82:317–24.

    PubMed  Google Scholar 

  207. Kierszenbaum AL, Tres LL. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol. 1975;65:258–70.

    CAS  PubMed  Google Scholar 

  208. Krawetz SA. Paternal contribution: new insights and future challenges. Nat Rev Genet. 2005;6:633–42.

    CAS  PubMed  Google Scholar 

  209. Lalancette C, Miller D, Li Y, Krawetz SA. Paternal contributions: new functional insights for spermatozoa RNA. J Cell Biochem. 2008;104:1570–9.

    CAS  PubMed  Google Scholar 

  210. Moldenhauer JS, Ostermeier GC, Johnson A, Diamond MP, Krawetz SA. Diagnosing male factor infertility using microarrays. J Androl. 2003;24:783–9.

    PubMed  Google Scholar 

  211. Ostermeier GC, Goodrich RJ, Diamond MP, Dix DJ, Krawetz SA. Toward using stable spermatozoal RNAs for prognostic assessment of male factor fertility. Fertil Steril. 2005;83:1687–94.

    PubMed  Google Scholar 

  212. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. A survey of small RNAs in human sperm. Hum Reprod. 2011;26:3401–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Hamatani T. Human spermatozoal RNAs. Fertil Steril. 2012;97:275–81.

    CAS  PubMed  Google Scholar 

  214. Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013;41:4104–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA, Reproductive Medicine Network. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013;19:604–24.

    CAS  PubMed  Google Scholar 

  216. Montjean D, De La Grange P, Gentien D, Rapinat A, Belloc S, Cohen-Bacrie P, Menezo Y, Benkhalifa M. Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet. 2012;29:3–10.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Henkel PhD, BEd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henkel, R. (2015). Novel Sperm Tests and Their Importance. In: Agarwal, A., Borges Jr., E., Setti, A. (eds) Non-Invasive Sperm Selection for In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1411-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1411-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1410-4

  • Online ISBN: 978-1-4939-1411-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics