Skip to main content

Fluorescence and Reflectance Spectroscopy for Detection of Oral Dysplasia and Cancer

  • Chapter
  • First Online:
Biomedical Optics in Otorhinolaryngology

Abstract

The development and progression of neoplasia in the oral cavity lead to measurable changes in the optical properties of oral tissue. These alterations can be detected using noninvasive optical techniques, potentially aiding in early detection and diagnosis. Various spectroscopic methods have been reported for detection of oral dysplasia and cancer. This chapter focuses on fluorescence spectroscopy, in which narrowband illumination light is used to excite endogenous fluorophores, and reflectance spectroscopy, in which broadband (white) illumination light is used to interrogate the elastic scattering properties and absorption properties of tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  3. Kalavrezos N, Bhandari R. Current trends and future perspectives in the surgical management of oral cancer. Oral Oncol. 2010;46:429–32.

    Article  PubMed  Google Scholar 

  4. Ow TJ, Myers JN. Current management of advanced resectable oral cavity squamous cell carcinoma. Clin Exp Otorhinolaryngol. 2011;4(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rapidis AD, Gullane P, Langdon JD, Lefebvre JL, Scully C, Shah JP. Major advances in the knowledge and understanding of the epidemiology, aetiopathogenesis, diagnosis, management and prognosis of oral cancer. Oral Oncol. 2009;45:299–300.

    Article  PubMed  Google Scholar 

  6. Petersen PE. Oral cancer prevention and control—the approach of the World Health Organization. Oral Oncol. 2009;45:454–60.

    Article  PubMed  Google Scholar 

  7. Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol. 2008;44:10–22.

    Article  PubMed  Google Scholar 

  8. Fedele S. Diagnostic aids in the screening of oral cancer. Head Neck Oncol. 2009;1:5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ho MW, Risk JM, Woolgar JA, et al. The clinical determinants of malignant transformation in oral epithelial dysplasia. Oral Oncol. 2012;48:969–76.

    Article  CAS  PubMed  Google Scholar 

  10. Eckardt A, Barth EL, Kokemueller H, Wegener G. Recurrent carcinoma of the head and neck: treatment strategies and survival analysis in a 20-year period. Oral Oncol. 2004;40:427–32.

    Article  CAS  PubMed  Google Scholar 

  11. Richards-Kortum R, Sevick-Muraca E. Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem. 1996;47:555–606.

    Article  CAS  PubMed  Google Scholar 

  12. Fryen A, Glanz H, Lohmann W, Dreyer T, Bohle RM. Significance of autofluorescence for the optical demarcation of field cancerisation in the upper aerodigestive tract. Acta Otolaryngol. 1997;117:316–9.

    Article  CAS  PubMed  Google Scholar 

  13. Takatani S, Graham MD. Theoretical analysis of diffuse reflectance from a two-layer tissue model. IEEE Trans Biomed Eng. 1979;26(12):656–64.

    Article  CAS  PubMed  Google Scholar 

  14. Amelink A, Christiaanse T, Sterenborg HJCM. Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation. Opt Lett. 2009;34(10):1525–7.

    Article  CAS  PubMed  Google Scholar 

  15. Mourant JR, Canpolat M, Brocker C, et al. Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. J Biomed Opt. 2000;5(2):131–7.

    Article  CAS  PubMed  Google Scholar 

  16. Backman V, Gopal V, Kalashnikov M, et al. Measuring cellular structure at submicrometer scale with light scattering spectroscopy. IEEE J Sel Top Quantum Electron. 2001;7(6):887–93.

    Article  CAS  Google Scholar 

  17. Policard A. Etude sur les aspects offerts par des tumeurs expérimentales examinées à la lumière de Wood. C R Soc Biol (Paris). 1924;91:1423–4.

    Google Scholar 

  18. Chance B, Thorell B. Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem. 1959;234:3044–50.

    CAS  PubMed  Google Scholar 

  19. Chance B, Cohen P, Jobsis F, Schoener B. Intracellular oxidation-reduction states in vivo. Science. 1962;137(3529):499–508.

    Article  CAS  PubMed  Google Scholar 

  20. Alfano RR, Tata DB, Cordero J, Tomashefsky P, Longo FW, Alfano MA. Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J Quantum Electron. 1984;20(12):1507–11.

    Article  Google Scholar 

  21. Alfano RR, Tang GC, Pradhan A, Lam W, Choy DSJ, Opher E. Fluorescence spectra from cancerous and normal human breast and lung tissues. IEEE J Quantum Electron. 1987;23(10):1806–11.

    Article  Google Scholar 

  22. Bigio IJ, Bown SG. Spectroscopic sensing of cancer and cancer therapy. Cancer Biol Ther. 2004;3(3):259–67.

    Article  CAS  PubMed  Google Scholar 

  23. Mahadevan-Jansen A, Richards-Kortum R. Raman spectroscopy for the detection of cancers and precancers. J Biomed Opt. 1996;1(1):31–70.

    Article  CAS  PubMed  Google Scholar 

  24. Marcu L. Fluorescence lifetime techniques in medical applications. Ann Biomed Eng. 2012;40(2):304–31.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gillenwater A, Jacob R, Richards-Kortum R. Fluorescence spectroscopy: a technique with potential to improve the early detection of aerodigestive tract neoplasia. Head Neck. 1998;20(6):556–62.

    Article  CAS  PubMed  Google Scholar 

  26. Inaguma M, Hashimoto K. Porphyrin-like fluorescence in oral cancer. Cancer. 1999;86:2201–11.

    Article  CAS  PubMed  Google Scholar 

  27. Pavlova I, Williams M, El-Naggar A, Richards-Kortum R, Gillenwater A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clin Cancer Res. 2008;14(8):2396–404.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Prahl SA (2013) Optical absorption of hemoglobin. Available at: http://omlc.ogi.edu/spectra/hemoglobin. Accessibility verified 12 Dec 2013.

  29. Zheng W, Li D, Zeng Y, Luo Y, Qu JY. Two-photon excited hemoglobin fluorescence. Biomed Opt Express. 2010;2(1):71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tunnell JW, Desjardins AE, Galindo L, et al. Instrumentation for multi-modal spectroscopic diagnosis of epithelial dysplasia. Technol Cancer Res Treat. 2003;2(6):505–14.

    Article  CAS  PubMed  Google Scholar 

  31. Amelink A, Kaspers OP, Sterenborg HJCM, van der Wal JE, Roodenburg JLN, Witjes MJH. Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy. Oral Oncol. 2008;44:65–71.

    Article  CAS  PubMed  Google Scholar 

  32. Utzinger U, Richards-Kortum RR. Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt. 2003;8(1):121–47.

    Article  PubMed  Google Scholar 

  33. Baran TM, Fenn MC, Foster TH. Determination of optical properties by interstitial white light spectroscopy using a custom fiber optic probe. J Biomed Opt. 2013;18(10):107007.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pfefer TJ, Schomacker KT, Ediger MN, Nishioka NS. Multiple-fiber probe design for fluorescence spectroscopy in tissue. Appl Opt. 2002;41(22):4712–21.

    Article  PubMed  Google Scholar 

  35. Pfefer TJ, Agrawal A, Drezek RA. Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy. J Biomed Opt. 2005;10(4):044016.

    Article  Google Scholar 

  36. Schwarz RA, Gao W, Daye D, Williams MD, Richards-Kortum R, Gillenwater AM. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe. Appl Opt. 2008;47(6):825–34.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roblyer D, Kurachi C, Stepanek V, et al. Objective detection and delineation of oral neoplasia using autofluorescence imaging. Cancer Prev Res (Phila). 2009;2(5):423–31.

    Article  Google Scholar 

  38. Hielscher AH, Kim HK, Klose AD. Forward models of light transport in biological tissue. In: Boas DA, Pitris C, Ramanujam N, editors. Handbook of biomedical optics. Boca Raton, FL: CRC Press; 2011. p. 319–36.

    Chapter  Google Scholar 

  39. Hull EL, Foster TH. Steady-state reflectance spectroscopy in the P3 approximation. J Opt Soc Am A. 2001;18(3):584–99.

    Article  Google Scholar 

  40. Jacques SL, Pogue BW. Tutorial on diffuse light transport. J Biomed Opt. 2008;13(4):041302.

    Article  PubMed  Google Scholar 

  41. Patterson MS, Chance B, Wilson BC. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl Opt. 1989;28(12):2331–6.

    Article  CAS  PubMed  Google Scholar 

  42. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37–61.

    Article  PubMed  Google Scholar 

  43. Arridge SR. Optical tomography in medical imaging. Inverse Prob. 1999;15:R41–93.

    Article  Google Scholar 

  44. Hielscher AH, Alcouffe RE, Barbour RL. Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Phys Med Biol. 1998;43:1285–302.

    Article  CAS  PubMed  Google Scholar 

  45. Flock ST, Patterson MS, Wilson BC, Wyman DR. Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng. 1989;36(12):1162–8.

    Article  CAS  Google Scholar 

  46. Zhu C, Liu Q. Review of Monte Carlo modeling of light transport in tissues. J Biomed Opt. 2013;18(5):050902.

    Article  Google Scholar 

  47. Pavlova I, Weber CR, Schwarz RA, Williams M, El-Naggar A, Gillenwater A, Richards-Kortum R. Monte Carlo model to describe depth selective fluorescence spectra of epithelial tissue: applications for diagnosis of oral precancer. J Biomed Opt. 2008;13(6):064012.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Staveren HJ, van Veen RLP, Speelman OC, Witjes MJH, Star WM, Roodenburg JLN. Classification of clinical autofluorescence spectra of oral leukoplakia using an artificial neural network: a pilot study. Oral Oncol. 2000;36:286–93.

    Article  PubMed  Google Scholar 

  49. de Veld DCG, Skurichina M, Witjes MJH, Duin RPW, Sterenborg HJCM, Roodenburg JLN. Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy. J Biomed Opt. 2004;9(5):940–50.

    Article  PubMed  Google Scholar 

  50. Majumder SK, Gupta A, Gupta S, Ghosh N, Gupta PK. Multi-class classification algorithm for optical diagnosis of oral cancer. J Photochem Photobiol B. 2006;85:109–17.

    Article  CAS  PubMed  Google Scholar 

  51. Kolli VR, Savage HE, Yao TJ, Schantz SP. Native cellular fluorescence of neoplastic upper aerodigestive mucosa. Arch Otolaryngol Head Neck Surg. 1995;121(11):1287–92.

    Article  CAS  PubMed  Google Scholar 

  52. Dhingra JK, Perrault DF, McMillan K, et al. Early diagnosis of upper aerodigestive tract cancer by autofluorescence. Arch Otolaryngol Head Neck Surg. 1996;122(11):1181–6.

    Article  CAS  PubMed  Google Scholar 

  53. Betz CS, Mehlmann M, Rick K, et al. Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer. Lasers Surg Med. 1999;25:323–34.

    Article  CAS  PubMed  Google Scholar 

  54. Heintzelman DL, Utzinger U, Fuchs H, et al. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem Photobiol. 2000;72(1):103–13.

    Article  CAS  PubMed  Google Scholar 

  55. Lau C, Šćepanović O, Mirkovic J, et al. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy. J Biomed Opt. 2009;14(2):024031.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Müller MG, Valdez TA, Georgakoudi I, et al. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Cancer. 2003;97:1681–92.

    Article  PubMed  Google Scholar 

  57. de Veld DCG, Skurichina M, Witjes MJH, Duin RPW, Sterenborg HJCM, Roodenburg JLN. Autofluorescence and diffuse reflectance spectroscopy for oral oncology. Lasers Surg Med. 2005;36:356–64.

    Article  PubMed  Google Scholar 

  58. Nieman LT, Kan CW, Gillenwater A, Markey MK, Sokolov K. Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial. J Biomed Opt. 2008;13(2):024011.

    Article  PubMed  Google Scholar 

  59. Schwarz RA, Gao W, Weber CR, et al. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer. 2009;115:1669–79.

    Article  PubMed  PubMed Central  Google Scholar 

  60. McGee S, Mardirossian V, Elackattu A, et al. Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy. Ann Otol Rhinol Laryngol. 2009;118(11):817–26.

    PubMed  PubMed Central  Google Scholar 

  61. Amelink A, Sterenborg HJCM, Roodenburg JLN, Witjes MJH. Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy. Oral Oncol. 2011;47:1165–70.

    Article  CAS  PubMed  Google Scholar 

  62. Roblyer D, Richards-Kortum R, Sokolov K, et al. Multispectral optical imaging device for in vivo detection of oral neoplasia. J Biomed Opt. 2008;13(2):024019.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pierce M, Yu D, Richards-Kortum R. High-resolution fiber-optic microendoscopy for in situ cellular imaging. J Vis Exp. 2011;47:e2306. doi:10.3791/2306.

    Google Scholar 

  64. Lane PM, Gilhuly T, Whitehead P, et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J Biomed Opt. 2006;11(2):024006.

    Article  PubMed  Google Scholar 

  65. Poh CF, Ng SP, Williams PM, et al. Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device. Head Neck. 2007;29:71–6.

    Article  PubMed  Google Scholar 

  66. Awan KH, Morgan PR, Warnakulasuriya S. Evaluation of an autofluorescence based imaging system (VELscopeTM) in the detection of oral potentially malignant disorders and benign keratoses. Oral Oncol. 2011;47:274–7.

    Article  CAS  PubMed  Google Scholar 

  67. Onizawa K, Yoshida H, Saginoya H. Chromatic analysis of autofluorescence emitted from squamous cell carcinomas arising in the oral cavity: a preliminary study. Int J Oral Maxillofac Surg. 2000;29:42–6.

    Article  CAS  PubMed  Google Scholar 

  68. Bedard N, Schwarz RA, Hu A, et al. Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study. Biomed Opt Express. 2013;4(6):938–49.

    Article  CAS  PubMed Central  Google Scholar 

  69. Marín NM, MacKinnon N, MacAulay C, et al. Calibration standards for multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis. J Biomed Opt. 2006;11(1):014010.

    Article  PubMed  Google Scholar 

  70. de Veld DCG, Witjes MJH, Sterenborg HJCM, Roodenburg JLN. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol. 2005;41:117–31.

    Article  PubMed  Google Scholar 

  71. Pavlova I, Weber CR, Schwarz RA, Williams MD, Gillenwater AM, Richards-Kortum R. Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties. J Biomed Opt. 2009;14(1):014009.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gray LV, Schwarz RA, Richards-Kortum R. Imaging as a tool for global cancer control. Comput Med Imaging Graph. 2013;37:195–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Gillenwater MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwarz, R.A., Richards-Kortum, R.R., Gillenwater, A.M. (2016). Fluorescence and Reflectance Spectroscopy for Detection of Oral Dysplasia and Cancer. In: Wong, BF., Ilgner, J. (eds) Biomedical Optics in Otorhinolaryngology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1758-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1758-7_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1757-0

  • Online ISBN: 978-1-4939-1758-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics