Skip to main content

Simple Quadrature Rules

  • Chapter
  • First Online:
More Calculus of a Single Variable

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 6794 Accesses

Abstract

In practice most definite integrals cannot be evaluated exactly. In such cases one must resort to various approximation methods, which can be quite complicated. Any method used to approximate a definite integral is called a quadrature rule. (Quadrature is any process used to construct a square equal in area to that of some given figure.) But in this chapter we see that even the simplest of quadrature rules can be useful, even when the exact value of the integral is known.

It is the mark of an educated mind to rest satisfied with the degree of precision which the nature of the subject admits.

—Aristotle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bracken, P., Plaza, Á.: Problem 1781. Math. Mag. 81, 376–377 (2008)

    Google Scholar 

  2. Bruce, I.: The logarithmic mean. Math. Gaz. 81, 89–92 (1997)

    Article  Google Scholar 

  3. Bullen, P.S.: Error estimates for some elementary quadrature rules. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 602–633, 97–103 (1978)

    MathSciNet  Google Scholar 

  4. Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer Academic, Dordrecht (2003)

    Book  MATH  Google Scholar 

  5. Burk, F.: Mean inequalities. Coll. Math. J. 14, 431–434 (1983)

    Google Scholar 

  6. Burk, F.: Behold! The midpoint rule is better than the trapezoid rule for convex functions (A proof without words). Coll. Math. J. 16, 56 (1985)

    Google Scholar 

  7. Burk, F.: Geometric, logarithmic, and arithmetic mean inequality. Am. Math. Mon. 94, 527–528 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlson, R.: A Concrete Approach to Real Analysis. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  9. Cerone, P., Dragomir, S.S.: Mathematical Inequalities: A Perspective. CRC, New York (2011)

    Google Scholar 

  10. Conrad, K.: Stirling’s formula (2014). www.math.uconn.edu/~kconrad

  11. Courant, R.: Differential and Integral Calculus, vol. 1. Wiley Classics Library, Hoboken (1988)

    Book  Google Scholar 

  12. DeTemple, D.W.: An elementary proof of the monotonicity of (1 + 1∕n)n and (1 + 1∕n)n+1. Coll. Math. J. 36, 147–149 (2005)

    Article  Google Scholar 

  13. Devadoss, S.L., O’Rourke, J.: Discrete and Computational Geometry. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  14. Dobrescu, M.: A new look at the convergence of a famous sequence. Int. J. Math. Educ. Sci. Technol. 41, 1079–1085 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dragomir, S.S.: On Hadamard’s inequalities for convex functions. Mat. Balk. 6, 215–222 (1992)

    MATH  Google Scholar 

  16. Dragomir, S.S., Ionescu, N.M.: Some integral inequalities for differentiable convex functions. Coll. Pap. Fac. Sci. Kragujev. (Yugoslavia) 13, 11–16 (1992)

    Google Scholar 

  17. Dutkay, D.E., Niculescu, C.P., Popovici, F.: Stirling’s formula and its extension for the Gamma function. Am. Math. Mon. 120, 737–740 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. Eddy, R.H., Fritsch, R.: An optimization oddity. Coll. Math. J. 25, 227–229 (1994)

    Article  MATH  Google Scholar 

  19. Fischer, I.: Problem Q828. Math. Mag. 67, 385–390 (1994)

    Article  Google Scholar 

  20. Garfunkel, J., Pittie, H.: Problem E1816. Am. Math. Mon. 74, 202 (1967)

    Article  MathSciNet  Google Scholar 

  21. Hammer, P.: The midpoint method of numerical integration. Math. Mag. 31, 193–195 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  22. Impens, C.: Stirling’s series made easy. Am. Math. Mon. 110, 730–735 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jichang, K.: Some extensions and refinements of the Minc-Sathre inequality. Math. Gaz. 83, 123–127 (1999)

    Article  Google Scholar 

  24. Just, E., Waterhouse, W.C.: Problem E1652. Am. Math. Mon. 71, 1043 (1964)

    Article  MathSciNet  Google Scholar 

  25. Keiper, J.B.: Stirling’s formula improved. College Math. J. 10, 38–39 (1979)

    Article  Google Scholar 

  26. Khattri, S.K.: Three proofs of the inequality \(\mathrm{e} < \left(1 + \frac{1} {x}\right)^{x+1/2}\). Am. Math. Mon. 117, 273–277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kung, S., Perlman, M.D.: Problem 1365. Math. Mag. 65, 61–63 (1992)

    MathSciNet  Google Scholar 

  28. Lang, S.: A First Course in Calculus. Addison Wesley, Reading (1964)

    MATH  Google Scholar 

  29. Lipkin, L.J.: How large is n! ? Coll. Math. J. 37, 109 (2006)

    Google Scholar 

  30. Lupu, C., Lupu, T.: Problem 927. Coll. Math. J. 41, 242 (2010); two solutions (different from that suggested in the hint) in Coll. Math. J. 42, 236–237 (2011)

    Google Scholar 

  31. Maritz, P.: James Stirling: mathematician and mine manager. Math. Intell. 33, 141–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mercer, P.R.: On the monotonicity of {(1 + 1∕n)n} and {(1 + 1∕n)n+1}. Coll. Math. J. 34, 236–238 (2003)

    Article  Google Scholar 

  33. Mercer, P.R.: On a precursor to Stirling’s formula. Math. Gaz. 87, 530–532 (2003)

    Google Scholar 

  34. Mercer, P.R.: Refined arithmetic, geometric, and harmonic mean inequalities. Rocky Mt. Math. J. 33, 1459–1464 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mercer, P.R.: Error Terms for Steffensen’s, Young’s, and Chebyshev’s inequalities. J. Math. Inequal. 2, 479–486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mitrinović, D.S., Lacković, I.B.: Hermite and convexity. Aequ. Math. 28, 229–232 (1985)

    Article  MATH  Google Scholar 

  37. Mountford, D.: Bounds for n! . Math. Gaz. 69, 286–287 (1985)

    Article  Google Scholar 

  38. Neuman, E.: The weighted logarithmic mean. J. Math. Anal. Appl. 18, 885–900 (1994)

    Article  MathSciNet  Google Scholar 

  39. Neuman, E., Zhou, L.: Problem 10798. Am. Math. Mon. 108, 178 (2001)

    Article  Google Scholar 

  40. Pare, R.: A visual proof of Eddy and Fritsch’s minimal area property. Coll. Math. J. 26, 43–44 (1995)

    Article  MATH  Google Scholar 

  41. Pecaric, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic, New York (1992)

    MATH  Google Scholar 

  42. Pinker, A., Chow, T.Y., Merino, J.C.: Problem 209. Coll. Math. J. 14, 353–356 (1983)

    Google Scholar 

  43. Roy, R.: Sources in the Development of Mathematics. Cambridge University Press, Cambridge/New York (2011)

    Book  MATH  Google Scholar 

  44. Sandor, J.: Some simple integral inequalities. Oct. Math. Mag. 16, 925–933 (2008)

    Google Scholar 

  45. Tong, J.: On Flett’s mean value theorem. Int. J. Math. Educ. Sci. Technol. 35, 936–941 (2004)

    Article  Google Scholar 

  46. Velleman, D.J.: Exponential vs. factorial. Am. Math. Mon. 113, 689–704 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wąsowicz, S., Witkowski, A.: On some inequality of Hermite-Hadamard Type. Opusc. Math. 32, 591–600 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mercer, P.R. (2014). Simple Quadrature Rules. In: More Calculus of a Single Variable. Undergraduate Texts in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1926-0_13

Download citation

Publish with us

Policies and ethics