Skip to main content

Exercise, Nutrition, and Bone Health

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Optimal bone metabolism is the result of hormonal, nutritional, and mechanical harmony, and a deficit in one area is usually impossible to overcome by improvements in others. Exercise during growth influences bone modeling locally at the regions being loaded, whereas calcium is thought to act systemically to influence bone remodeling. Despite acting through different mechanisms, a growing body of research suggests that exercise and calcium may not operate independently. Low dietary calcium intake or reduced bioavailability may minimize the adaptive response to exercise-induced bone loading. Conversely, adequate levels of calcium intake can maximize the positive effect of physical activity on bone health during the growth period of children and adolescents. Research also suggests that adequate levels of calcium intake can maximize bone density at the regions being loaded during exercise. Achieving optimal bone health and minimizing one’s risk of osteoporotic fracture later in life depend on a lifelong approach. This approach relies on the establishment of an optimum level of bone during the growth years, with a subsequent goal to maintain and slow the rate of age-related bone loss thereafter. Exercise, adequate nutrition, and optimal hormone levels are the components that influence the bone outcome. Making healthy nutritional choices, engaging in weight-bearing physical activity, and ensuring optimal hormone levels during growth provides a window of opportunity to build optimal bone mass, to reduce the risk of fracture later in life. Concurrent management of fracture risk with a physical activity prescription, adequate nutrition, and pharmacotherapy for osteoporosis when required offers the best approach to optimal bone health throughout adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726.

    Article  CAS  PubMed  Google Scholar 

  2. Melton 3rd LJ, Atkinson EJ, O'Connor MK, et al. Bone density and fracture risk in men. J Bone Miner Res. 1998;13:1915.

    Article  PubMed  Google Scholar 

  3. Melton 3rd LJ, Chrischilles EA, Cooper C, et al. Perspective. How many women have osteoporosis? J Bone Miner Res. 1992;7:1005.

    Article  PubMed  Google Scholar 

  4. Bouxsein ML. Determinants of skeletal fragility. Best Pract Res Clin Rheumatol. 2005;19:897–911.

    Article  PubMed  Google Scholar 

  5. Consensus Development Conference. Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;1994(90):646–50.

    Google Scholar 

  6. Kanis JA, Melton III LJ, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–41.

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organisation. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical Report Series 843. Geneva. WHO; 1994.

    Google Scholar 

  8. Compston J. Osteoporosis. In: Campbell G, Compston J, Crisp A, editors. The management of common metabolic disorders. Cambridge: Cambridge University Press; 1993. p. 29–62.

    Chapter  Google Scholar 

  9. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C. Peak bone mass. Osteoporos Int. 2000;11(12):985–1009.

    Article  CAS  PubMed  Google Scholar 

  10. Rizzoli R, Bonjour JP. Determinants of peak bone mass and mechanisms of bone loss. Osteoporos Int. 1999;9:S17–23.

    Article  PubMed  Google Scholar 

  11. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–5. PubMed PMID: 1400871.

    CAS  PubMed  Google Scholar 

  12. Bachrach LK. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab. 2001;12(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  13. Bonjour JP, Rizzoli R. Bone acquisition in adolescents. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. San Diego: Academic; 2001. p. 621–38.

    Chapter  Google Scholar 

  14. Mazess R. On aging bone loss. Clin Orthoped. 1982;165:239–52.

    Google Scholar 

  15. Glynn NW, Meilahn EN, Charron M, Anderson SJ, Kuller LH, Cauley JA. Determinants of bone mineral density in older men. J Bone Mineral Res. 1995;10:1769–77.

    Article  CAS  Google Scholar 

  16. Recker RR, Deng HW. Role of genetics in osteoporosis. Endocrine. 2002;17(1):55–66.

    Article  CAS  PubMed  Google Scholar 

  17. Rizzoli R, Bonjour JP, Ferrari SL. Osteoporosis, genetics and hormones. J Mol Endocrinol. 2001;26:79–94.

    Article  CAS  PubMed  Google Scholar 

  18. Teegarden D, Proulx WR, Martin BR, Zhao J, McCabe GP, Lyle RM, et al. Peak bone mass in young women. J Bone Miner Res. 1995;10(5):711–5. PubMed PMID: 7639106.

    Article  CAS  PubMed  Google Scholar 

  19. Bonjour JP, Chevalley T. Pubertal timing, peak bone mass and fragility fracture risk. Bone Key-Osteovision. 2007;4(2):30–48.

    Article  Google Scholar 

  20. Krall EA, Dawson-Hughes B. Heritable and lifestyle determinants of bone mineral density. J Bone Miner Res. 1993;8:1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wong PKK, Christie JJ, Wark JD. The effects of smoking on bone health. Clin Sci (Lond). 2007;113(5):233–41.

    Article  CAS  Google Scholar 

  22. Weaver CM, Hill KM. Ch 44 Osteoporosis: the early years. In: Nutrition in the prevention and treatment of disease. 2013; Third Edition.

    Google Scholar 

  23. Greenleaf JE, Kozlowski S. Physiological consequences of reduced physical activity during bed rest. Exerc Sport Sci Rev (ESSR). 2002;10:84–119.

    Google Scholar 

  24. Tallarida G, Peruzzi G, Castrucci F, Raimondi G, Legramante JM, Cassarino S, et al. Dynamic and static exercises in the countermeasure programmes for musculo-skeletal and cardiovascular deconditioning in space. Physiologist. 1991;34 Suppl 1:S114–7. PubMed PMID: 2047405.

    CAS  PubMed  Google Scholar 

  25. Mazess RB, Whedon GD. Immobilization and bone. Calcif Tissue Int. 1983;35(3):265–7. PMID: 6409385; PubMed - indexed for MEDLINE.

    Article  CAS  PubMed  Google Scholar 

  26. Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res. 2005;20:809–16.

    Article  PubMed  Google Scholar 

  27. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23:399–407.

    Article  CAS  PubMed  Google Scholar 

  28. Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31(1):45–50.

    Article  PubMed  Google Scholar 

  29. Stone M. Connective tissue and bone responses to strength training. In: Komi PV, editor. Strength and power in sport. Cambridge, MA: Blackwell Scientific Publications; 1992.

    Google Scholar 

  30. Andreoli A, Monteleone M, Van Loan M, Promezio L, Tarantino U, De Lorenzo A. Effects of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exerc. 2001;33(4):507–11.

    Article  CAS  PubMed  Google Scholar 

  31. Suominen H. Bone mineral density and long term exercise An overview of cross-sectional athlete studies. Sports Med. 1993;16(5):316–30.

    Article  CAS  PubMed  Google Scholar 

  32. Virvidakis K, Georgiou E, Korkotsidis A, Ntalles K, Proukakis C. Bone mineral content of junior competitive weightlifters. Int J Sports Med. 1990;11(3):244–6. PubMed PMID: 2373585.

    Article  CAS  PubMed  Google Scholar 

  33. Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16(1):148–56. PubMed PMID: 11149479.

    Article  CAS  PubMed  Google Scholar 

  34. Daly RM, Rich PA, Klein R, Bass S. Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: A prospective study in young male gymnasts. J Bone Miner Res. 1999;14(7):1222–30.

    Article  CAS  PubMed  Google Scholar 

  35. Frost HM. The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res. 1992;7:253–61.

    Article  CAS  PubMed  Google Scholar 

  36. Iuliano-Burns S, Saxon L, Naughton G, et al. Regional specificity of exercise and calcium during skeletal growth in girls: a randomized controlled trial. J Bone Miner Res. 2003;18:156–62.

    Article  PubMed  Google Scholar 

  37. Naumann FL, Bennell KL, Wark JD. The effects of + Gz force on the bone mineral density of fighter pilots. Aviat Space Environ Med. 2001;72:177–81.

    CAS  PubMed  Google Scholar 

  38. Naumann FL, Grant MC, Dhaliwal SS. Changes in cervical spine bone mineral density in response to flight training. Aviat Space Environ Med. 2004;75:255–9.

    CAS  PubMed  Google Scholar 

  39. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.

    Article  PubMed  Google Scholar 

  40. LeBlanc AD, Spector ER, Evans HJ, Sibonga JD. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact. 2007;7:33–47.

    CAS  PubMed  Google Scholar 

  41. Bass SL, Saxon L, Daly RM, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17:2274.

    Article  CAS  PubMed  Google Scholar 

  42. Kannus P, Haapasalo H, Sankelo M, et al. Effect of starting age of physical activity. Ann Intern Med. 1995;123:27.

    Article  CAS  PubMed  Google Scholar 

  43. Morris F, Smith R, Payne W, Galloway A, Wark J. Compressive and shear force generated in the lumbar spine of female rowers. Int J Sports Med. 2000;21:518–23.

    Article  CAS  PubMed  Google Scholar 

  44. Karlsson M, Rosengren E. Physical activity as a strategy to reduce the risk of osteoporosis and fragility fractures. Int J Endocrinol Metab. 2012;10(3):527–36.

    Article  Google Scholar 

  45. Khan K, McKay HA, Haapasalo H, et al. Does childhood and adolescence provide a unique opportunity for exercise to strengthen the skeleton? J Sci Med Sport. 2000;3:150.

    Article  CAS  PubMed  Google Scholar 

  46. Cummings SR, Newitt MC, Browner WS, et al. Study of osteoporotic fractures research group: risk factors for hip fracture in white women. N Engl J Med. 1995;1995(332):767–73.

    Article  Google Scholar 

  47. Hernandez C, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14:843–7.

    Article  CAS  PubMed  Google Scholar 

  48. Bass S, Pearce G, Bradney M, et al. Exercise before puberty May confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13:500.

    Article  CAS  PubMed  Google Scholar 

  49. Khan KM, Bennell KL, Hopper JL, Flicker L, Nowson CA, Sherwin AJ, et al. Self-reported ballet classes undertaken at age 10-12 years and hip bone mineral density in later life. Osteoporos Int. 1998;8(2):165–73. PubMed PMID: 9666941.

    Article  CAS  PubMed  Google Scholar 

  50. Daly RM. The effect of exercise on bone mass and structural geometry during growth. Med Sport Sci. 2007;51:33–49. Review; PubMed PMID: 17505118.

    Article  PubMed  Google Scholar 

  51. Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997;12(9):1453–62. PubMed PMID: 9286762.

    Article  CAS  PubMed  Google Scholar 

  52. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998;13(12):1814–21. PubMed PMID: 9844098.

    Article  CAS  PubMed  Google Scholar 

  53. Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40(1):14–27. Epub 2006 Sep 7. Review; PubMed PMID: 16956802.

    Article  CAS  PubMed  Google Scholar 

  54. Hughes JM, Novotny SA, Wetzsteon RJ, Petit MA. Lessons learned from school-based skeletal loading intervention trials: putting research into practice. Med Sport Sci. 2007;51:137–58. Review; PubMed PMID: 17505124.

    Article  PubMed  Google Scholar 

  55. U.S. Department of Health and Human Services. The surgeon general’s call to action to prevent and decrease overweight and obesity. Rockville, MD: U.S. Department of Health and Human Services, Public Health Services, Office of the Surgeon General; 2001.

    Google Scholar 

  56. Rowland TW, Freedson PS. Physical activity, fitness, and health in children: a close look. Pediatrics. 1994;93:669–72.

    CAS  PubMed  Google Scholar 

  57. Office of the Surgeon General (US). Bone health and osteoporosis: a report of the surgeon general. Rockville, MD: Office of the Surgeon General (US); 2004.

    Google Scholar 

  58. Kohrt W, Bloomfield S, Little K, Nelson M, Yingling V. ACSM position stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36(11):1985–96.

    Article  PubMed  Google Scholar 

  59. Kanis JA. Diagnosis of osteoporosis. Osteoporos Int. 1997;7 Suppl 3:S108–16. Review; PubMed PMID: 9536315.

    Article  PubMed  Google Scholar 

  60. Heinonen A, Oja P, Sievanen H, Pasanen M, Vuori I. Effect of two training regimens on bone mineral density in healthy peri- menopausal women: a randomised controlled trial. J Bone Min Res. 1998;13:483–90.

    Article  CAS  Google Scholar 

  61. Kelley GA, Kelley KS, Kohrt WM. Exercise and bone mineral density in premenopausal women: a meta-analysis of randomized controlled trial. Int J Endocrinol; 2013 ID741639, 16

    Google Scholar 

  62. Preisinger E, Alacamlioglu Y, Pils K, et al. Therapeutic exercise in the prevention of bone loss. A controlled trial with women after menopause. Am J Phys Med Rehabil. 1995;74:120.

    Article  CAS  PubMed  Google Scholar 

  63. Hartard M, Haber P, Ilieva D, et al. Systematic strength training as a model of therapeutic intervention. A controlled trial in postmenopausal women with osteopenia. Am J Phys Med Rehabil. 1996;75:21.

    Article  CAS  PubMed  Google Scholar 

  64. Wallace BA, Cummings RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000;67:10–8.

    Article  CAS  PubMed  Google Scholar 

  65. Gregg EW, Pereira MA, Caspersen CJ. Physical activity, falls, and fractures among older adults: a review of the epidemiologic evidence. J Am Geriatr Soc. 2000;48:883.

    CAS  PubMed  Google Scholar 

  66. Karlsson M. Does exercise reduce the burden of fractures? A review. Acta Orthop Scand. 2002;73:691.

    PubMed  Google Scholar 

  67. Kujala UM, Kaprio J, Kannus P, et al. Physical activity and osteoporotic hip fracture risk in men. Arch Intern Med. 2000;160:705.

    Article  CAS  PubMed  Google Scholar 

  68. Carter ND, Kannus P, Khan KM. Exercise in the prevention of falls in older people: a systematic literature review examining the rationale and the evidence. Sports Med. 2001;31:427.

    Article  CAS  PubMed  Google Scholar 

  69. Robertson MC, Campbell AJ, Gardner MM, Devlin N. Preventing injuries in older people by preventing falls: a meta-analysis of individual-level data. J Am Geriatr Soc. 2002;50:905.

    Article  PubMed  Google Scholar 

  70. Gillespie LD, Gillespie WJ, Robertson MC et al. Interventions for preventing falls in elderly people (Review). Cochrane Database Syst Rev 2009;(2):CD000340.

    Google Scholar 

  71. Itoi E, Sinaki M. Effect of back-strengthening exercise on posture in healthy women 49 to 65 years of age. Mayo Clin Proc. 1994;69:1054.

    Article  CAS  PubMed  Google Scholar 

  72. Hauer K, Specht N, Schuler M, et al. Intensive physical training in geriatric patients after severe falls and hip surgery. Age Ageing. 2002;31:49.

    Article  PubMed  Google Scholar 

  73. Sinaki M, Lynn SG. Reducing the risk of falls through proprioceptive dynamic posture training in osteoporotic women with kyphotic posturing: a randomized pilot study. Am J Phys Med Rehabil. 2002;81:241.

    Article  PubMed  Google Scholar 

  74. Sinaki M, Itoi E, Wahner HW, et al. Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women. Bone. 2002;30:836.

    Article  CAS  PubMed  Google Scholar 

  75. Sinaki M. Critical appraisal of physical rehabilitation measures after osteoporotic vertebral fracture. Osteoporos Int. 2003;14:773.

    Article  PubMed  Google Scholar 

  76. Giangregorio LM, Papaioannou A, MacIntyre NJ, Ashe M, Heinonen A, Shipp K, Wark J, McGill S, Keller H, Jain R, Laprade J, Cheung AM. Too Fit To Fracture: Exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos Int. 2013;25(3):821–35.

    Article  PubMed  Google Scholar 

  77. Cashman KD. Diet and control of osteoporosis. In: Remacle C, Reusens B, editors. Functional foods, ageing and degenerative disease. Cambridge: Woodhead Publishing Limited; 2004. p. 83–114.

    Chapter  Google Scholar 

  78. Zanker CL, Cooke CB. Energy balance, bone turnover, and skeletal health in physically active individuals. Med Sci Sports Exerc. 2004;36(8):1372–81. PubMed PMID: 15292746.

    Article  CAS  PubMed  Google Scholar 

  79. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine. What Clinicians need to know. J Clin Endocrinol Metab. 2011;96:53–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Bolland MJ, Grey A, Avenell A, Gamble G, Reid I. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the women’s health initiative limited access dataset and meta-analysis. BMJ. 2011;342:1–9.

    Google Scholar 

  81. Obermayer-Pietsch BM, Bonelli CM, Walter DE, et al. Genetic predisposition for adult lactose intolerance and relation to diet, bone density, and bone fractures. J Bone Miner Res. 2004;19:42.

    Article  PubMed  Google Scholar 

  82. Bonjour JP, Carroe AL, Ferrari S, et al. Calcium-enriched foods and bone mass growth in pre-pubertal girls: a randomised, double-blind, placebo controlled trial. J Clin Invest. 1997;99:1287–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Dibba B, Prentice A, Ceesay M, et al. Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr. 2000;71:544–9.

    CAS  PubMed  Google Scholar 

  84. Winzenburg T, Shaw K, Fryer J, Jone G. Effects of calcium supplementation on bone density in healthy children: a meta-analysis of randomized controlled trials. BMJ. 2006;333(7572):775–8.

    Article  CAS  Google Scholar 

  85. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Cameron MA, Paton LM, Nowson CA, Margerison C, Frame M, Wark JD. The effect of calcium supplementation on bone density in premenarcheal females: a co-twin approach. J Clin Endocrinol Metab. 2004;89(10):4916–22.

    Article  CAS  PubMed  Google Scholar 

  87. Johnston Jr CC, Miller JZ, Slemenda CW, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med. 1992;327:82.

    Article  PubMed  Google Scholar 

  88. Nowson CA, Green RM, Hopper JL, Sherwin AJ, Young D, Kaymakci B, Guest CS, Smid M, Larkins RG, Wark JD. A co-twin study of the effect of calcium supplementation on bone density during adolescence. Osteoporos Int. 1997;7(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  89. Anderson JJB, Rondano PA. Peak bone mass development of females: can young adult women improve their peak bone mass? J Am Coll Nutr. 1996;15:570–4.

    Article  CAS  PubMed  Google Scholar 

  90. Whelten DC, Kemper HC, Post GB, van Staveren WA. A meta-analysis of the effect of calcium intake on bone mass in young and middle aged females and males. J Nutr. 1995;125(11):2802–13.

    Google Scholar 

  91. Cumming R. Calcium intake and bone mass: a quantitative review of the evidence. Calcif Tissue Int. 1990;47(4):194–201.

    Article  CAS  PubMed  Google Scholar 

  92. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337(10):670–6.

    Article  CAS  PubMed  Google Scholar 

  93. Devine A, Dick IA, Heal SJ, Criddle RA. A 4-year follow-up study of the effects of calcium supplementation on bone density in elderly postmenopausal women. Osteoporos Int. 1997;7:23–8.

    Article  CAS  PubMed  Google Scholar 

  94. Shea B, Wells G, Cranney A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocr Rev. 2002;23:552.

    Article  CAS  PubMed  Google Scholar 

  95. Heaney RP. Estrogen-calcium interaction in the postmenopausal: a quantitative description. Bone Miner. 1990;11:67–84.

    Article  CAS  PubMed  Google Scholar 

  96. Prestwood KM, Thompson DJ, Kenny AM, Seibel MJ, Pilbeam CC, Raisz LG. Low dose estrogen and calcium have an additive effect on bone resorption in older women. J Clin Endocrinol Metab. 1999;84:179–83.

    CAS  PubMed  Google Scholar 

  97. Tang B, Eslick G, Nowsen C, Somith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370:657–66.

    Article  CAS  PubMed  Google Scholar 

  98. Sanders K, Nowson CA, Kotowicz MA, Briffa K, Devine A, Reid I. Calcium and bone health: position statement for the Australian and New Zealand Bone and Mineral Society, Osteoporosis Australia and the Endocrine Society of Australia. Med J Aust. 2009;190:6.

    Google Scholar 

  99. Ilich JZ, et al. Calcitriol and bone mass accumulation in females during puberty. Calcif Tissue Int. 1997;61:104–9.

    Article  CAS  PubMed  Google Scholar 

  100. Ilich JZ, Kerstetter JE. Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr. 2000;19(6):715–37. Review. PubMed PMID: 11194525.

    Article  CAS  PubMed  Google Scholar 

  101. LeBoff MS, Kohlmeier L, Hurwitz S, Franklin J, Wright J, Glowacki J. Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA. 1999;281(16):1505–11.

    Article  CAS  PubMed  Google Scholar 

  102. Webb AR, Pilbeam C, Hanafin N, Holick MF. An evaluation of the relative contributions of exposure to sunlight and of diet to the circulating concentrations of 25-hydroxyvitamin D in an elderly nursing home population in Boston. Am J Clin Nutr. 1990;51(6):1075–81. PubMed PMID: 2349922.

    CAS  PubMed  Google Scholar 

  103. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. Br Med J. 2009;339:b3692.

    Article  CAS  Google Scholar 

  104. Bischoff-Ferrari HA, Willett WC, Orav EJ, Lips P, Meunier PJ, Lyons RA, Flicker L, Wark J, Jackson RD, Cauley JA, Meyer HE, Pfeifer M, Sanders KM, Stähelin HB, Theiler R, Dawson-Hughes B. A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med. 2012;367(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  105. Kerstetter JE, O'Brien KO, Insogna KL. Dietary protein, calcium metabolism, and skeletal homeostasis revisited. Am J Clin Nutr. 2003;78:584S–92.

    CAS  PubMed  Google Scholar 

  106. Kerstetter J. Dietary protein and bone: a new approach to an old question. Am J Clin Nutr. 2009;90(6):1451–2.

    Article  CAS  PubMed  Google Scholar 

  107. Darling A, Milward D, Torgerson D, Hewitt C, Lanham-New S. Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr. 2009;90(6):1674–92.

    Article  CAS  PubMed  Google Scholar 

  108. Felsen et al. J Bone Min Res 1993;8:567–73.

    Google Scholar 

  109. Svendsen OL, Hassager C, Christiansen C. Effect of an energy-restrictive diet with or without exercise on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women. Am J Med. 1993;95:131–40.

    Article  CAS  PubMed  Google Scholar 

  110. Ammann P, Bourin S, Bonjour JP, Meyer JM, Rizzoli R. Protein under-nutrition-induced bone loss is associated with decreased IGF-I levels and estrogen deficiency. J Bone Miner Res. 2000;15:683–90.

    Article  CAS  PubMed  Google Scholar 

  111. Bonjour JP, Ammann P, Chevalley T. Protein intake and bone growth. Can J Appl Physiol. 2001;26:S153–66.

    Article  CAS  PubMed  Google Scholar 

  112. Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DP. Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res. 2000;15(12):2504–12. PubMed PMID: 11127216.

    Article  CAS  PubMed  Google Scholar 

  113. Bonjour JP, Schurch MA, Rizzoli R. Nutritional aspects of hip fractures. Bone. 1996;18:139S–44.

    Article  CAS  PubMed  Google Scholar 

  114. Powers PS. Osteoporosis and eating disorders. J Pediatr Adolesc Gynecol. 1999;12(2):51–7. Review; PubMed PMID: 10326187.

    Google Scholar 

  115. Andersen AE, Watson T, Schlechte J. Osteoporosis and osteopenia in men with eating disorders. Lancet. 2000;3555:1967–8.

    Article  Google Scholar 

  116. Soyka LA, Misra M, Frenchman A, Miller KK, Grinspoon S, Schoenfeld DA, et al. Abnormal bone mineral accrual in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 2002;87(9):4177–85. PubMed PMID: 12213868.

    Article  CAS  PubMed  Google Scholar 

  117. Dennison E, Cooper C, Cole Z. Early development and osteoporosis and bone health. J Dev Orig Health Dis. 2010;1(3):142–9.

    Article  CAS  PubMed  Google Scholar 

  118. Fewtrell M. Early nutritional predictors of long-term bone health in preterm infants. Curr Opin Clin Nutr Metab Care. 2011;14(3):297–301.

    Article  PubMed  Google Scholar 

  119. Fewtrell MS, Prentice A, Jones SC, Bishop NJ, Stirling D, Buffenstein R, Lunt M, Cole TJ, Lucas A. Bone mineralisation and turnover in preterm infants at 8-12 years of age: The effect of early diet. J Bone Miner Res. 1999;14(5):810–20.

    Article  CAS  PubMed  Google Scholar 

  120. Yarbrough DE, Barrett-Connor E, Morton DJ. Birth weight as a predictor of adult bone mass in postmenopausal women: the rancho Bernardo study. Osteoporos Int. 2000;11(7):626–30.

    Article  CAS  PubMed  Google Scholar 

  121. Wosje KS, Specker BL. Role of calcium in bone health during childhood. Nutr Rev. 2000;58(9):253–68.

    Article  CAS  PubMed  Google Scholar 

  122. Lee WT, Leung SS, Leung DM, Cheng JC. A follow-up study on the effects of calcium-supplement withdrawal and puberty on bone acquisition of children. Am J Clin Nutr. 1996;64(1):71–7.

    CAS  PubMed  Google Scholar 

  123. Matkovic V, Kostial K, Simonovic I, et al. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr. 1979;32(3):540–9.

    CAS  PubMed  Google Scholar 

  124. Grant AM, Avenell A, Campbell MK, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet. 2005;365(9471):1621–8.

    Article  CAS  PubMed  Google Scholar 

  125. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354(7):669–83.

    Article  CAS  PubMed  Google Scholar 

  126. Prince RL, Devine A, Dhaliwal SS, Dick IM. Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo- controlled trial in elderly women. Arch Intern Med. 2006;166(8):869–75.

    Article  CAS  PubMed  Google Scholar 

  127. Boonen S, Lips P, Bouillon R, Bischoff-Ferrari HA, Vanderschueren D, Haentjens P. Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab. 2007;92(4):1415–23.

    Article  CAS  PubMed  Google Scholar 

  128. Heaney RP. Nutritional factors in bone health in elderly subjects: methodological and contextual problems. Am J Clin Nutr. 1989;50(5 Suppl):1182–9. discussion 1231-5. Review; PubMed PMID: 2683727.

    CAS  PubMed  Google Scholar 

  129. Compston JE, Flahive F, Hosmer DW, Watts NB, Siris ES, Silverman S, Saag KG, Roux C, Rossini M, Pfeilschifter J, Nieves JW, Netelenbos JC, March L, LaCroix AZ, Hooven FH, Greenspan SL, Gehlbach SH, Díez-Pérez A, Cooper C, Chapurlat RD, Boonen S, Anderson FA, Adami S, Adachi JD. Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: The global longitudinal study of osteoporosis in women (GLOW). J Bone Mineral Res. 2013;29(2):487–93.

    Article  Google Scholar 

  130. De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton 3rd LJ, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16:1330–8.

    Article  PubMed  Google Scholar 

  131. Morin S, Tsang JF, Leslie WD. Weight and body mass index predict bone mineral density and fractures in women aged 40 to 59 years. Osteoporosis international. New York: Springer; 2009.

    Google Scholar 

  132. Huang Z, Himes JH, McGovern PG. Nutrition and subsequent hip fracture risk among a national cohort of white women. Am J Epidemiol. 1996;144:124.

    Article  CAS  PubMed  Google Scholar 

  133. Bass SL, Naughton G, Saxon L, Iuliano-Burns S, Daly R, Briganti EM, Hume C, Nowson C. Exercise and calcium combined results in a greater osteogenic effect than either factor alone: A blinded randomized placebo-controlled trial in boys. J Bone Mineral Res. 2007;22(3):458–64.

    Article  CAS  Google Scholar 

  134. Dalsky G. Effect of exercise on bone: permissive influence of estrogen and calcium. Med Sci Sports Exerc. 1990;22:281–5.

    Article  CAS  PubMed  Google Scholar 

  135. Specker BL. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res. 1996;11(10):1539–44. Review; PubMed PMID: 8889855.

    Article  CAS  PubMed  Google Scholar 

  136. Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3- to 5-year-old children. J Bone Miner Res. 2003;18:885–92.

    Article  CAS  PubMed  Google Scholar 

  137. Stear SJ, Prentice A, Jones SC, Cole TJ. Effect of calcium and exercise on bone mineral status of 16-18-y-old adolescent girls. Am J Clin Nutr. 2003;77:885–92.

    Google Scholar 

  138. Iuliano-Burns S, Stone J, Hopper J, Seeman E. Diet and Exercise during growth have site-specific skeletal effects: a co-twin control study. Osteoporos Int. 2005;16(10):1225–32.

    Article  CAS  PubMed  Google Scholar 

  139. Riggs L, Khosla S, Melton L. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging Men. J Bone Miner Res. 1998;13(5):763–73.

    Article  CAS  PubMed  Google Scholar 

  140. Lukert B. Glucocorticoid-induced osteoporosis. South Med J. 1992;85 Suppl 2:48–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona L. Morris-Naumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morris-Naumann, F.L., Wark, J.D. (2015). Exercise, Nutrition, and Bone Health. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics