Skip to main content

Locomotion Through Complex Fluids: An Experimental View

  • Chapter
  • First Online:
Complex Fluids in Biological Systems

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Recently, there has been renewed interest in the swimming of microorganisms for applications that include artificial swimmers, novel materials, drug delivery, and micro-robotics. Due to small length scales, the fluid mechanics of swimming of microorganisms are governed by low Reynolds number hydrodynamics. In such a regime, linear viscous forces dominate over nonlinear inertial forces. While our current understanding of locomotion at low Reynolds numbers is derived mainly from investigations in simple, Newtonian fluids (e.g., water), many of the fluids in which locomotion occurs contain solids and/or (biological) polymers that are instead not Newtonian. Examples include wet soils, human mucus, and fluids in the cervix and female reproductive track. A major challenge is to understand the propulsion mechanisms in fluids that display complex rheological behavior such as viscoelasticity and shear-thinning viscosity. Here, we will briefly review a few notable swimming experiments in Newtonian fluids and then discuss the latest experimental results on swimming in complex fluids, focusing on viscoelastic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    ADS  Google Scholar 

  2. C. Brennen, H. Winet, Annu. Rev. Fluid Mech. 9(1), 339 (1977)

    ADS  Google Scholar 

  3. J. Gray, J. Exp. Biol. 32(4), 775 (1955)

    Google Scholar 

  4. J. Gray, G. Hancock, J. Exp. Biol. 32(4), 802 (1955)

    Google Scholar 

  5. N. Cohen, J.H. Boyle, Contemp. Phys. 51(2), 103 (2010)

    ADS  Google Scholar 

  6. J. Gray, H.W. Lissmann, J. Exp. Biol. 41(1), 135 (1964)

    Google Scholar 

  7. J. Sznitman, X. Shen, R. Sznitman, P.E. Arratia, Phys. Fluids (1994–present) 22, 121901 (2010)

    Google Scholar 

  8. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72(9), 096601 (2009)

    MathSciNet  ADS  Google Scholar 

  9. J. Lighthill, SIAM Rev. 18(2), 161 (1976)

    MATH  MathSciNet  Google Scholar 

  10. N.A. Croll, The Behaviour of Nematodes: Their Activity, Senses and Responses (Edward Arnold, London, 1970)

    Google Scholar 

  11. J.G. White, E. Southgate, J.N. Thomson, S. Brenner, Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1 (1986)

    ADS  Google Scholar 

  12. W.B. Wood, The Nematode Caenorhabditis elegans (Cold Spring Harbour Laboratory, New York, 1987)

    Google Scholar 

  13. H.C. Berg, E. coli in Motion (Springer, New York, 2004)

    Google Scholar 

  14. H.C. Berg, Phys. Today 53(1), 24 (2000)

    ADS  Google Scholar 

  15. H.C. Berg, Biochemistry 72(1), 19 (2003)

    Google Scholar 

  16. H.C. Berg, Curr. Biol. 18(16), R689 (2008)

    Google Scholar 

  17. D. Bray, Cell Movements: From Molecules to Motility (Garland Science, New York, 2001)

    Google Scholar 

  18. D.R. Mitchell, J. Phycol. 36, 261 (2000)

    Google Scholar 

  19. M. Werner, L.W. Simmons, Biol. Rev. 83, 191 (2008)

    Google Scholar 

  20. I. Gibbons, J. Cell Biol. 91(3), 107s (1981)

    Google Scholar 

  21. R. Lyons, O. Djahanbakhch, T. Mahmood, E. Saridogan, S. Sattar, M. Sheaff, A. Naftalin, R. Chenoy, Hum. Reprod. 17, 584 (2002)

    Google Scholar 

  22. R. Lyons, E. Saridogan, O. Djahanbakhch, Hum. Reprod. Update 12, 363 (2006)

    Google Scholar 

  23. T. Nakahari, A. Nishimura, C. Shimamoto, A. Sakai, H. Kuwabara, T. Nakano, S. Tanaka, Y. Kohda, H. Matsumura, H. Mori, Biomed. Res. 32, 321 (2011)

    Google Scholar 

  24. P. Satir, M.A. Sleigh, Annu. Rev. Physiol. 52, 137 (1990)

    Google Scholar 

  25. A. Korngreen, Z. Priel, Biophys. J. 67(1), 377 (1994)

    ADS  Google Scholar 

  26. A.L. Oldenburg, R.K. Chhetri, D.B. Hill, B. Button, Biomed. Opt. Express 3, 1978 (2012)

    Google Scholar 

  27. G. Taylor, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 209, 447 (1951)

    Google Scholar 

  28. G. Taylor, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 211, 225 (1952)

    Google Scholar 

  29. I. Aranson, Physics 6, 61 (2013)

    Google Scholar 

  30. J.S. Guasto, R. Rusconi, R. Stocker, Annu. Rev. Fluid Mech. 44, 373 (2012)

    MathSciNet  ADS  Google Scholar 

  31. S. Chattopadhyay, R. Moldovan, C. Yeung, X. Wu, Proc. Natl. Acad. Sci. 103(37), 13712 (2006)

    ADS  Google Scholar 

  32. D. Katz, J. Blake, S. Paveri-Fontana, J. Fluid Mech. 72(03), 529 (1975)

    MATH  ADS  Google Scholar 

  33. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1 (Springer, Berlin, 1983)

    Google Scholar 

  34. D. Saintillan, Physics 3, 84 (2010)

    Google Scholar 

  35. S.A. Koehler, T.R. Powers, Phys. Rev. Lett. 85(22), 4827 (2000)

    ADS  Google Scholar 

  36. B. Qian, T.R. Powers, K.S. Breuer, Phys. Rev. Lett. 100, 078101 (2008)

    ADS  Google Scholar 

  37. S.Y. Tony, E. Lauga, A. Hosoi, Phys. Fluids (1994–present) 18, 091701 (2006)

    Google Scholar 

  38. M.S. Sakar, C. Lee, P.E. Arratia, Phys. Fluids 21, 91107 (2009)

    Google Scholar 

  39. S. Zhong, K.W. Moored, V. Pinedo, J. Garcia-Gonzalez, A.J. Smits, Exp. Therm. Fluid Sci. 46, 1 (2013)

    Google Scholar 

  40. M. Kim, J.C. Bird, A.J. Van Parys, K.S. Breuer, T.R. Powers, Proc. Natl. Acad. Sci. 100(26), 15481 (2003)

    ADS  Google Scholar 

  41. M.J. Kim, M.J. Kim, J.C. Bird, J. Park, T.R. Powers, K.S. Breuer, Exp. Fluids 37(6), 782 (2004)

    Google Scholar 

  42. E. Setter, I. Bucher, S. Haber, Phys. Rev. E 85, 066304 (2012)

    ADS  Google Scholar 

  43. P. Weiss, Sci. News 169, 107 (2006)

    Google Scholar 

  44. R. Trouilloud, S.Y. Tony, A. Hosoi, E. Lauga, Phys. Rev. Lett. 101, 048102 (2008)

    ADS  Google Scholar 

  45. C.H. Wiggins, D. Riveline, A. Ott, R.E. Goldstein, Biophys. J. 74, 1043 (1998)

    ADS  Google Scholar 

  46. M. Leoni, J. Kotar, B. Bassetti, P. Cicuta, M.C. Lagomarsino, Soft Matter 5(2), 472 (2009)

    ADS  Google Scholar 

  47. J.J. Abbott, K.E. Peyer, M.C. Lagomarsino, L. Zhang, L. Dong, I.K. Kaliakatsos, B.J. Nelson, Int. J. Rob. Res. 28(11), 1434 (2009)

    Google Scholar 

  48. H.C. Berg, Rev. Sci. Instrum. 42(6), 868 (1971)

    ADS  Google Scholar 

  49. H.C. Berg, Adv. Opt. Elect. Microsc. 7, 1 (1978)

    Google Scholar 

  50. H.C. Berg, D.A. Brown, Nature 239(5374), 500 (1972)

    ADS  Google Scholar 

  51. L. Turner, W.S. Ryu, H.C. Berg, J. Bacteriol. 182, 2793 (2000)

    Google Scholar 

  52. S.C. Lenaghan, C.A. Davis, W.R. Henson, Z. Zhang, M. Zhang, Proc. Natl. Acad. Sci. 108(34), E550 (2011)

    ADS  Google Scholar 

  53. K. Drescher, K.C. Leptos, R.E. Goldstein, Rev. Sci. Instrum. 80(1), 014301 (2009)

    ADS  Google Scholar 

  54. E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90(2), 400 (2006)

    ADS  Google Scholar 

  55. R. Di Leonardo, D. Dell’Arciprete, L. Angelani, V. Iebba, Phys. Rev. Lett. 106(3), 038101 (2011)

    ADS  Google Scholar 

  56. A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101(3), 038102 (2008)

    ADS  Google Scholar 

  57. J. Cosson, P. Huitorel, C. Gagnon, Cell Motil. Cytoskeleton 54(1), 56 (2003)

    Google Scholar 

  58. L. Rothchild, Nature 198, 1221 (1963)

    ADS  Google Scholar 

  59. D. Woolley, Reproduction 126, 259 (2003)

    Google Scholar 

  60. S. Jana, S.H. Um, S. Jung, Phys. Fluids (1994–present) 24(4), 041901 (2012)

    Google Scholar 

  61. P. Denissenko, V. Kantsler, D.J. Smith, J. Kirkman-Brown, Proc. Natl. Acad. Sci. 109(21), 8007 (2012)

    ADS  Google Scholar 

  62. R. Ghosh, J. Sznitman, J. Vis. 15, 1–3 (2012)

    Google Scholar 

  63. F. Lebois, P. Sauvage, C. Py, O. Cardoso, B. Ladoux, P. Hersen, J.M. Di Meglio, Biophys. J. 102(12), 2791 (2012)

    ADS  Google Scholar 

  64. K. Konig, L. Svaasand, Y. Liu, G. Sonek, P. Patrizio, Y. Tadir, M. Berns, B. Tromberg, Cell. Mol. Biol. (Noisy-le-Grand, France) 42(4), 501 (1996)

    Google Scholar 

  65. Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, M. Berns, Fertil. Steril. 53, 944 (1990)

    Google Scholar 

  66. Z. Teff, Z. Priel, L.A. Gheber, Biophys. J. 92, 1813 (2007)

    ADS  Google Scholar 

  67. S. Chattopadhyay, X.L. Wu, Biophys. J. 96(5), 2023 (2009)

    ADS  Google Scholar 

  68. B. Rodenborn, C.H. Chen, H.L. Swinney, B. Liu, H. Zhang, Proc. Natl. Acad. Sci. 110, E338 (2013)

    ADS  Google Scholar 

  69. G. Batchelor, J. Fluid Mech. 44(03), 419 (1970)

    MATH  MathSciNet  ADS  Google Scholar 

  70. A.T. Chwang, T. Wu, J. Fluid Mech. 67(04), 787 (1975)

    MATH  MathSciNet  ADS  Google Scholar 

  71. J.B. Keller, S.I. Rubinow, J. Fluid Mech. 75(04), 705 (1976)

    MATH  ADS  Google Scholar 

  72. R.E. Johnson, J. Fluid Mech. 99(02), 411 (1980)

    MATH  MathSciNet  ADS  Google Scholar 

  73. J. Higdon, J. Fluid Mech. 90(04), 685 (1979)

    MATH  MathSciNet  ADS  Google Scholar 

  74. J. Higdon, J. Fluid Mech. 94(02), 331 (1979)

    MATH  MathSciNet  ADS  Google Scholar 

  75. H. Kurtuldu, D. Tam, A. Hosoi, K. Johnson, J. Gollub, Phys. Rev. E 88(1), 013015 (2013)

    ADS  Google Scholar 

  76. S.T. Wereley, C.D. Meinhart, Annu. Rev. Fluid Mech. 42, 557 (2010)

    ADS  Google Scholar 

  77. D. Murphy, D. Webster, J. Yen, Limnol. Oceanogr. Methods 10, 1096 (2012)

    Google Scholar 

  78. K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105(16), 168101 (2010)

    ADS  Google Scholar 

  79. J.S. Guasto, K.A. Johnson, J.P. Gollub, Phys. Rev. Lett. 105(16), 168102 (2010)

    ADS  Google Scholar 

  80. L.J. Fauci, R. Dillon, Annu. Rev. Fluid Mech. 38, 371 (2006)

    MathSciNet  ADS  Google Scholar 

  81. S. Suarez, H. Ho, Reprod. Domest. Anim. 38, 119 (2003)

    Google Scholar 

  82. E.R. Trueman, Locomotion of Soft-Bodied Animals (Edward Arnold, London, 1975)

    Google Scholar 

  83. E. Lauga, Phys. Fluids 19(8), 083104 (2007)

    MathSciNet  ADS  Google Scholar 

  84. T.D. Montenegro-Johnson, D.J. Smith, D. Loghin, Phys. Fluids (1994–present) 25, 081903 (2013)

    Google Scholar 

  85. J.R. Vélez-Cordero, E. Lauga, J. Non-Newtonian Fluid Mech. 199, 37 (2013)

    Google Scholar 

  86. D. Katz, R. Mills, T. Pritchett, J. Reprod. Fertil. 53(2), 259 (1978)

    Google Scholar 

  87. T. Chaudhury, J. Fluid Mech. 95(01), 189 (1979)

    MATH  MathSciNet  ADS  Google Scholar 

  88. H.C. Fu, C.W. Wolgemuth, T.R. Powers, Phys. Fluids 21(3), 033102 (2009)

    ADS  Google Scholar 

  89. J. Teran, L. Fauci, M. Shelley, Phys. Rev. Lett. 104, 038101 (2010)

    ADS  Google Scholar 

  90. B. Liu, T.R. Powers, K.S. Breuer, Proc. Natl. Acad. Sci. 108, 19516 (2011)

    ADS  Google Scholar 

  91. X. Shen, P.E. Arratia, Phys. Rev. Lett. 106, 208101 (2011)

    ADS  Google Scholar 

  92. N.C. Keim, M. Garcia, P.E. Arratia, Phys. Fluids (1994–present) 24(8), 081703 (2012)

    Google Scholar 

  93. S.E. Spagnolie, B. Liu, T.R. Powers, Phys. Rev. Lett. 111, 068101 (2013)

    ADS  Google Scholar 

  94. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics (Wiley, New York, 1987)

    Google Scholar 

  95. R.G. Larson, The Structure and Rheology of Complex Fluids, vol. 4 (Oxford University Press New York, 1999)

    Google Scholar 

  96. E.S. Shaqfeh, Annu. Rev. Fluid Mech. 28, 129 (1996)

    MathSciNet  ADS  Google Scholar 

  97. H.C. Ho, S.S. Suarez, Reproduction 122(4), 519 (2001)

    Google Scholar 

  98. D. Katz, T. Bloom, R. Bondurant, Biol. Reprod. 25(5), 931 (1981)

    Google Scholar 

  99. L.A. McPartlin, S.S. Suarez, C.A. Czaya, K. Hinrichs, S. Bedford-Guaus, Biol. Reprod. 81, 199 (2009)

    Google Scholar 

  100. A. Houry, M. Gohar, J. Deschamps, E. Tischenko, S. Aymerich, A. Gruss, R. Briandet, Proc. Natl. Acad. Sci. 109(32), 13088 (2012)

    ADS  Google Scholar 

  101. S. Yazdi, A.M. Ardekani, Biomicrofluidics 6 (2012)

    Google Scholar 

  102. S. Jung, A.G. Winter, A. Hosoi, Int. J. Non-Linear Mech. 46(4), 602 (2011)

    ADS  Google Scholar 

  103. A.G. Winter, R.L. Deits, A.E. Hosoi, J. Exp. Biol. 215, 2072 (2012)

    Google Scholar 

  104. G.R. Fulford, D.F. Katz, R.L. Powell, Biorheology 35(4), 295 (1998)

    Google Scholar 

  105. M.J. Kim, K.S. Breuer, Small 4(1), 111 (2008)

    Google Scholar 

  106. D. Boger, J. Non-Newtonian Fluid Mech. 3(1), 87 (1977)

    Google Scholar 

  107. H.C. Fu, T.R. Powers, C.W. Wolgemuth, Phys. Rev. Lett. 99(25), 258101 (2007)

    ADS  Google Scholar 

  108. S.K. Lai, Y.Y. Wang, D. Wirtz, J. Hanes, Adv. Drug Deliv. Rev. 61(2), 86 (2009)

    Google Scholar 

  109. S. Brenner, Genetics 77(1), 71 (1974)

    Google Scholar 

  110. L. Byerly, R. Cassada, R. Russell, Dev. Biol. 51(1), 23 (1976)

    Google Scholar 

  111. X. Shen, J. Sznitman, P. Krajacic, T. Lamitina, P. Arratia, Biophys. J. 102, 2772 (2012)

    ADS  Google Scholar 

  112. F.T. Trouton, Proc. R. Soc. London Ser. A 77, 426 (1906)

    ADS  Google Scholar 

  113. S.L. Anna, G.H. McKinley, J. Rheol. (1978–present) 45(1), 115 (2001)

    Google Scholar 

  114. G.H. McKinley, T. Sridhar, Annu. Rev. Fluid Mech. 34, 375 (2002)

    MathSciNet  ADS  Google Scholar 

  115. P.E. Arratia, C. Thomas, J. Diorio, J.P. Gollub, Phys. Rev. Lett. 96(14), 144502 (2006)

    ADS  Google Scholar 

  116. D.S. Guzick, J.W. Overstreet, P. Factor-Litvak, C.K. Brazil, S.T. Nakajima, C. Coutifaris, S.A. Carson, P. Cisneros, M.P. Steinkampf, J.A. Hill, New England J. Med. 345(19), 1388 (2001)

    Google Scholar 

  117. C. Josenhans, S. Suerbaum, Int. J. Med. Microbiol. 291(8), 605 (2002)

    Google Scholar 

  118. M. Alexander, Introduction to Soil Microbiology (Wiley, New York, 1991)

    Google Scholar 

  119. H.C. Berg, L. Turner, Nature 278, 349 (1979)

    ADS  Google Scholar 

  120. W.R. Schneider, R. Doetsch, J. Bacteriol. 117, 696 (1974)

    Google Scholar 

  121. Y. Magariyama, S. Kudo, Biophys. J. 83, 733 (2002)

    ADS  Google Scholar 

  122. H.C. Fu, V.B. Shenoy, T.R. Powers, EPL (Europhys. Lett.) 91(2), 24002 (2010)

    Google Scholar 

  123. J. Du, J.P. Keener, R.D. Guy, A.L. Fogelson, Phys. Rev. E 85(3), 036304 (2012)

    ADS  Google Scholar 

  124. S. Nakamura, Y. Adachi, T. Goto, Y. Magariyama, Biophys. J. 90, 3019 (2006)

    ADS  Google Scholar 

  125. A. Leshansky, Phys. Rev. E 80(5), 051911 (2009)

    ADS  Google Scholar 

  126. D. Gagnon, X. Shen, P. Arratia, EPL (Europhys. Lett.) 104(1), 14004 (2013)

    Google Scholar 

  127. A. Rodd, D. Dunstan, D. Boger, Carbohydr. Polym. 42, 159 (2000)

    Google Scholar 

  128. M. Doi, The Theory of Polymer Dynamics (Oxford university press, Oxford, 1988)

    Google Scholar 

  129. D.A. Gagnon, N.C. Keim, X. Shen, P.E. Arratia, Fluid-induced propulsion of rigid particles in wormlike micellar solutions. Phys. Fluids 26, 103101 (2014)

    ADS  Google Scholar 

  130. T. Normand, E. Lauga, Phys. Rev. E 78, 061907 (2008)

    ADS  Google Scholar 

  131. O.S. Pak, T. Normand, E. Lauga, Phys. Rev. E 81, 036312 (2010)

    ADS  Google Scholar 

  132. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437(7060), 862 (2005)

    ADS  Google Scholar 

  133. S. Zhou, A. Sokolov, O.D. Lavrentovich, I.S. Aranson, Proc. Natl. Acad. Sci. 111, 1265 (2014)

    ADS  Google Scholar 

  134. P.C. Mushenheim, R.R. Trivedi, H.H. Tuson, D.B. Weibel, N.L. Abbott, Soft Matter 10, 88 (2014)

    ADS  Google Scholar 

  135. A. Kumar, T. Galstian, S.K. Pattanayek, S. Rainville, Mol. Cryst. Liq. Cryst. 574(1), 33 (2013)

    Google Scholar 

  136. L.H. Cisneros, R. Cortez, C. Dombrowski, R.E. Goldstein, J.O. Kessler, Exp. Fluids 43(5), 737 (2007)

    Google Scholar 

  137. A. Sokolov, I.S. Aranson, Phys. Rev. Lett. 103, 148101 (2009)

    ADS  Google Scholar 

  138. V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)

    ADS  Google Scholar 

  139. H. Kurtuldu, J.S. Guasto, K.A. Johnson, J.P. Gollub, Proc. Natl. Acad. Sci. 108(26), 10391 (2011)

    ADS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank David Gagnon, Nathan Keim, Arvind Gopinath, Alexander Leshansky, and Xiaoning Shen for help with the text and in drafting illustrations. This work was supported by the US-Israel Binational Science Foundation (BSF grant nr. 2011323) and J. Sznitman was supported in part by the European Commission (FP7 Program) through a Career Integration Grant (PCIG09-GA-2011-293604). P.E. Arratia was supported in part by the Army Research Office through award W911NF-11-1-0488 and by NSF-CBET-Career Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué Sznitman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sznitman, J., Arratia, P.E. (2015). Locomotion Through Complex Fluids: An Experimental View. In: Spagnolie, S. (eds) Complex Fluids in Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2065-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2065-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2064-8

  • Online ISBN: 978-1-4939-2065-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics