Skip to main content

Abstract

Weeds are one of the major causes of yield loss and, depending on the weed pressure and methods of weed control, their yields can be reduced up to 50 %. Agricultural biotechnology has enabled engineering of crops to make them tolerant to one or more broad-spectrum herbicides, allowing for the in-crop use of those herbicides for simplified but effective weed control. The incorporation of herbicide-tolerant crops into farming systems further facilitates no-tillage or low-tillage practices by controlling emerging weeds through post-planting herbicide application, leading to increased water retention in the soil, less soil disruption, less soil erosion, and increased organic matter in the soil. This review discusses the development of glyphosate- and glufosinate-tolerant biotech traits, and the use of trait stacking to fill the immediate needs of farmers facing the challenges of hard-to-control and resistant weeds in their fields. This discussion also considers the development of an additional herbicide-trait system for dicamba tolerance.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-2202-4_16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JA, Kolmer JA (2005) Rust control in glyphosate tolerant wheat following application of the herbicide glyphosate. Plant Dis 89:1136–1142

    Article  CAS  Google Scholar 

  • Barry G, Kishore GM, Rogers PS (1992) Glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthases. WO Patent WO1992004449A1

    Google Scholar 

  • Barry G, Slmous F, Kishore GM, Padgette SR, Stallings WC (1997) Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases. US Patent US5633435A

    Google Scholar 

  • Bayer E, Gugel KH, Hägele K, Hagenmaier H, Jessipow S, König WA, Zähner H (1972) Stoffwechselprodukte von mikroorganismen. 98. Mitteilung. Phosphinothricin und phosphinothricyl-alanyl-alanin. Helvet Chim Acta 55:224–239

    Article  CAS  PubMed  Google Scholar 

  • Beckie HJ, Reboud X (2009) Selecting for weed resistance: herbicide rotation and mixture. Weed Technol 23:363–370

    Article  CAS  Google Scholar 

  • Behrens MR, Mutlu N, Chakraborty S, Dumitru R, Jiang WZ, Lavallee BJ, Herman PL, Clemente TE, Weeks DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:1185–1188

    Article  CAS  PubMed  Google Scholar 

  • Bevan M, Barnes WM, Chilton MD (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 11:369–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters. Pest Manag Sci 64:441–456

    Article  CAS  PubMed  Google Scholar 

  • Brinker RJ, Burns WC, Feng PCC, Gupta A, Hoi S-W, Malven M, Wu K (2011) Soybean transgenic event mon 87708 and methods of use thereof. US Patent US20110067134A1

    Google Scholar 

  • Brinker RJ, Burns WC, Feng PCC, Kendig JA, LeClere S, Lutke JL, Malven M (2012) Cotton transgenic event mon 88701 and methods of use thereof | événement transgénique mon 88701 du coton et ses procédés d’utilisation. WO Patent WO2012134808A1

    Google Scholar 

  • Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587

    Article  CAS  PubMed  Google Scholar 

  • CaJacob CA, Feng PCC, Heck GR, Alibhai MF, Sammons RD, Padgette SR (2004) Engineering resistance to herbicides. In: Christou P, Klee H (eds) Handbook of plant biotechnology. Wiley, Chichester, pp 353–372

    Google Scholar 

  • Cao M, Sato SJ, Behrens M, Jiang WZ, Clemente TE, Weeks DP (2011) Genetic engineering of maize (Zea mays) for high-level tolerance to treatment with the herbicide dicamba. J Agric Food Chem 59:5830–5834.

    Article  CAS  PubMed  Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho H-J, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops: a review. J Environ Qual 35:1633–1658

    Article  CAS  PubMed  Google Scholar 

  • Cereghini S, Herbomel P, Jouanneau J, Saragosti S, Katinka M, Bourachot B, de Crombrugghe B, Yaniv M (1983) Structure and function of the promoter-enhancer region of polyoma and SV40. Cold Spring Harb Symp Quant Biol 47 Pt 2:935–944

    Article  PubMed  Google Scholar 

  • Cerny RE, Bookout JT, CaJacob CA, Groat JR, Hart JL, Heck GR, Huber SA, Listello J, Martens AB, Oppenhuizen ME, Sammons B, Scanlon NK, Shappley ZW, Yang JX, Xiao J (2010) Development and characterization of a cotton (Gossypium hirsutum L.) event with enhanced reproductive resistance to glyphosate. Crop Sci 50:1375–1384

    Article  CAS  Google Scholar 

  • Chakraborty S, Behrens M, Herman PL, Arendsen AF, Hagen WR, Carlson DL, Wang X-Z, Weeks DP (2005) A three-component dicamba O-demethylase from Pseudomonas maltophilia, strain DI-6: purification and characterization. Arch Biochem Biophys 437:20–28

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-CS, Hubmeier C, Tran M, Martens A, Cerny RE, Sammons RD, CaJacob C (2006) Expression of CP4 EPSPS in microspores and tapetum cells of cotton (Gossypium hirsutum) is critical for male reproductive development in response to late-stage glyphosate applications. Plant Biotechnol J 4:477–487

    CAS  PubMed  Google Scholar 

  • D’Ordine RL, Rydel TJ, Storek MJ, Sturman EJ, Moshiri F, Bartlett RK, Brown GR, Eilers RJ, Dart C, Qi YL, Flasinski S, Franklin SJ (2009) Dicamba monooxygenase: structural insights into a dynamic Rieske oxygenase that catalyzes an exocyclic monooxygenation. J Mol Biol 392:481–497

    Article  Google Scholar 

  • Delannay X, Bauman TT, Beighley DH, Buettner MJ, Coble HD, DeFelice MS, Derting CW, Diedrick TJ, Griffin JL, Hagood ES, Hancock FG, Hart SE, LaVallee BJ, Loux MM, Lueschen WE, Matson KW, Moots CK, Murdock E, Nickell AD, Owen MDK, Paschal EH, Prochaska LM, Raymond PJ, Reynolds DB, Rhodes WK, Roeth FW, Sprankle PL, Tarochione LJ, Tinius CN, Walker RH, Wax LM, Weigelt HD, Padgette SR (1995) Yield evaluation of a glyphosate-tolerant soybean line after treatment with glyphosate. Crop Sci 35:1461–1467

    Article  CAS  Google Scholar 

  • Diggle AJ, Neve PB, Smith FP (2003) Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res 43:371–382

    Article  Google Scholar 

  • Droge-Laser W, Siemeling U, Puhler A, Broer I (1994) The metabolites of the herbicide L-phosphinothricin (glufosinate) (identification, stability, and mobility in transgenic, herbicide-resistant, and untransformed plants). Plant Physiol 105:159–166

    PubMed Central  PubMed  Google Scholar 

  • Dröge W, Broer I, Pühler A (1992) Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide l-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187:142–151.

    Article  PubMed  Google Scholar 

  • Du W, Wallis NG, Mazzulla MJ, Chalker AF, Zhang L, Liu WS, Kallender H, Payne DJ (2000) Characterization of Streptococcus pneumoniae 5-enolpyruvylshikimate 3-phosphate synthase and its activation by univalent cations. Eur J Biochem 267:222–227

    Article  CAS  PubMed  Google Scholar 

  • Duke SO (2011) Glyphosate degradation in Gglyphosate-resistant and -susceptible crops and weeds. J AgricFood Chem 59:5835–5841

    Article  CAS  Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325

    Article  CAS  PubMed  Google Scholar 

  • Dumitru R, Jiang WZ, Weeks DP, Wilson MA (2009) Crystal structure of dicamba monooxygenase: a Rieske nonheme oxygenase that catalyzes oxidative demethylation. J Mol Biol 392:498–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elmore RW, Roeth FW, Klein RN, Knezevic SZ, Martin A, Nelson LA, Shapiro CA (2001) Glyphosate-resistant soybean cultivar response to glyphosate. Agron J 93:404–407

    Article  CAS  Google Scholar 

  • Feng PCC, Baley GJ, Clinton WP, Bunkers GJ, Alibhai MF, Paulitz TC, Kidwell KK (2005) Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean. Proc Natl Acad Sci U S A 102:17290–17295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng PCC, Clark C, Andrade GC, Balbi MC, Caldwell P (2008) The control of Asian rust by glyphosate in glyphosate-resistant soybeans. Pest Manag Sci 64:353–359

    Article  CAS  PubMed  Google Scholar 

  • Feng PCC, Cajacob CA, Martino-Catt SJ, Cerny RE, Elmore GA, Heck GR, Huang J, Kruger WM, Malven M, Miklos JA, Padgette SR (2010a) Glyphosate-resistant crops: developing the next generation products. In: Nandula VK (ed) Glyphosate resistance in crops and weeds. Wiley, Hoboken, pp 45–65

    Google Scholar 

  • Feng PCC, Malven M, Flasinski, S (2010b) Chloroplast transit peptides for efficient targeting of DMO and uses thereof. US Patent US7838729B2

    Google Scholar 

  • Feng PPC, Qi Y, Chiu T, Stoecker MA, Schuster CL, Johnson SC, Fonseca AE, Huang J (2014) Improving hybrid seed production in corn with glyphosate-mediated male sterility Pest Manag Sci 70:212–218

    Article  CAS  PubMed  Google Scholar 

  • Geisy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup herbicide. Rev Environ Toxicol 167:35–120

    Google Scholar 

  • Green JM (2012) The benefits of herbicide-resistant crops. Pest Manag Sci 68:1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Green JM, Castle LA (2010) Transitioning from single to multiple herbicide-resistant crops. In: Nandula VK (ed) Glyphosate resistance in crops and weeds. Wiley, Hoboken, pp 67–91

    Chapter  Google Scholar 

  • Grossmann K (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508

    Article  CAS  PubMed  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants-the challenge for 21st Century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  PubMed  Google Scholar 

  • Heck GR, Armstrong CL, Astwood JD, Behr CF, Bookout JT, Brown SM, Cavato TA, DeBoer DL, Deng MY, George C, Hillyard JR, Hironaka CM, Howe AR, Jakse EH, Ledesma BE, Lee TC, Lirette RP, Mangano ML, Mutz JN, Qi Y, Rodriguez RE, Sidhu SR, Silvanovich A, Stoecker MA, Yingling RA, You J (2005) Development and characterization of a CP4 EPSPS-based, glyphosate-tolerant corn event. Crop Sci 45:329–339

    Article  CAS  Google Scholar 

  • Herman PL, Behrens M, Chakraborty S, Chrastil BM, Barycki J, Weeks DP (2005) A three-component dicamba O-demethylase from Pseudomonas maltophilia, strain DI-6: gene isolation, characterization, and heterologous expression. J Biol Chem 280:24759–24767

    Article  CAS  PubMed  Google Scholar 

  • Hitz B (1999) Commentary: economic aspects of transgenic crops which produce novel products. Curr Opin Plant Biol 2:135–138

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Kim C, An G (2000) Tissue-preferential expression of a rice alpha-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol 123:1005–1014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones MA, Snipes CE (1999) Tolerance of transgenic cotton to topical application of glyphosate. J Cotton Sci 3:19–26

    CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood RC, Hetherington R, Reynolds TL, Marshall G (2000) Absorption, localisation, translocation and activity of glyphosate in barnyardgrass (Echinochloa crus-galli (L) Beauv): influence of herbicide and surfactant concentration. Pest Manag Sci 56:359–367

    Article  CAS  Google Scholar 

  • Krueger JP, Butz RG, Atallah YH, Cork DJ (1989) Isolation and identification of microorganisms for the degradation of dicamba. J Agric Food Chem 37: 534–538

    Article  CAS  Google Scholar 

  • Lagator M, Vogwill T, Mead A, Colegrave N, Neve P (2013) Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii. New Phytol 198:938–945

    Article  CAS  PubMed  Google Scholar 

  • Lebrun M., Sailland A, Freyssinet G, Degryse E (2003) Mutated 5-enol pyruvylshikimate-3-phosphate synthase, gene encoding for said protein and transformed plants containing said gene. US Patent US6566587 B1

    Google Scholar 

  • Liu QP, Xue QZ (2005) Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J Genet 84:55–62

    Article  CAS  PubMed  Google Scholar 

  • Martino-Catt SJ, Sachs ES (2008) The next generation of biotech crops. Plant Physiol 147:3–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murray EE, Lotzer J, Eberle M (1989) Codon usage in plant genes. Nucleic Acids Res 17:477–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neve P (2008) Simulation modelling to understand the evolution and management of glyphosate resistance in weeds. Pest Manag Sci 64:392–401

    Article  CAS  PubMed  Google Scholar 

  • Nida DL, Kolacz KH, Beuhler RE, Deaton WR, Schuler WR, Armstrong TA, Taylor ML, Ebert CC, Rogan, GJ, Padgette SR, Fuchs RL (1996) Glyphosate-tolerant cotton: genetic characterization and protein expression. J Agric Food Chem 44:1960–1966

    Article  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agr Sci 144:31–43

    Article  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461

    Article  CAS  Google Scholar 

  • Pedotti M, Rosini E, Molla G, Moschetti T, Savino C, Vallone B, Pollegioni L (2009) Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J Biol Chem 284:36415–36423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plegt L, Bino R (1989) β-Glucuronidase activity during development of the male gametophyte from transgenic and non-transgenic plants. Mol Gen Genet 216:321–327

    Article  CAS  Google Scholar 

  • Pline WA, Edmisten KL, Oliver T, Wilcut JW, Wells R, Allen NS (2002a) Use of digital image analysis, viability stains, and germination assays to estimate conventional and glyphosate-resistant cotton pollen viability. Crop Sci 42:2193–2200

    Google Scholar 

  • Pline WA, Viator R, Wilcut JW, Edmisten KL, Thomas J, Wells R (2002b) Reproductive abnormalities in glyphosate-resistant cotton caused by lower CP4-EPSPS levels in the male reproductive tissue. Weed Sci 50:438–447

    Google Scholar 

  • Pline WA, Wilcut JW, Duke SO, Edmisten KL, Wells R (2002c) Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J Agric Food Chem 50:506–512

    Google Scholar 

  • Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance-different approaches through protein engineering. FEBS J 278:2753–2766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Powles SB, Preston C, Bryan IB, Jutsum AR (1997) Herbicide resistance: impact and management. In: Donald LS (ed) Advances in agronomy, vol 58. Elsevier, San Diego, pp 57–93

    Google Scholar 

  • Priestman MA, Funke T, Singh IM, Crupper SS, Schonbrunn E (2005) 5-Enolpyruvylshikimate-3-phosphate synthase from Staphylococcus aureus is insensitive to glyphosate. FEBS Lett 579:728–732

    Article  CAS  PubMed  Google Scholar 

  • Que Q, Chilton MD, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229

    Article  PubMed  Google Scholar 

  • Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143

    Article  CAS  PubMed  Google Scholar 

  • Reddy KN, Rimando AM, Duke SO, Nandula VK (2008) Aminomethylphosphonic acid accumulation in plant species treated with glyphosate. J Agric Food Chem 56:2125–2130

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Johnston JS, Shippen DE, McKnight TD (2004) TELOMERASE ACTIVATOR1 induces telomerase activity and potentiates responses to auxin in Arabidopsis. Plant Cell 16:2910–2922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siehl DL, Castle LA, Gorton R, Chen YH, Bertain S, Cho H-J, Keenan R, Liu D, Lassner MW (2005) Evolution of a microbial acetyltransferase for modification of glyphosate: a novel tolerance strategy. Pest Manag Sci 61:235–240

    Article  CAS  PubMed  Google Scholar 

  • Siehl DL, Castle LA, Gorton R, Keenan RJ (2007) The molecular basis of glyphosate resistance by an optimized microbial acetyltransferase. J Biol Chem 282:11446–11455

    Article  CAS  PubMed  Google Scholar 

  • Singer SD, Liu Z, Cox KD (2012) Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. Plant Cell Rep 31:13–25

    Article  CAS  PubMed  Google Scholar 

  • Smith EA, Oehme FW (1992) The biological activity of glyphosate to plants and animals: a literature review. Vet Hum Toxicol 34:531–543

    CAS  PubMed  Google Scholar 

  • Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    Article  PubMed  Google Scholar 

  • Subramanian MV, Tuckey J, Patel B, Jensen PJ (1997) Engineering dicamba selectivity in crops: a search for appropriate degradative enzyme(s). J Ind Microbiol Biot 19:344–349

    Article  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  CAS  PubMed  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vargas RN, Wright S, Martin-Duvall TM (1998) Tolerance of Roundup Ready cotton to Roundup Ultra applied at various growth stages. Proc Beltwide Cotton Conf 1:847–848

    Google Scholar 

  • Wang X, Li B, Herman PL, Weeks DP (1997) A three-component enzyme system catalyzes the O demethylation of the herbicide dicamba in Pseudomonas maltophilia DI-6. Appl Environ Microbiol 63:1623–1626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

    Article  CAS  PubMed  Google Scholar 

  • Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221:523–530

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintai Huang .

Editor information

Editors and Affiliations

Acknowledgments

Acknowledgments

The authors wish to thank Paul Feng, Marianne Malven, Sherry LeClere, Marty Stoecker, and Jim Masucci for their work on these projects and for helpful discussions during the writing of this manuscript. We would also like to acknowledge Margaret Allen for her careful reading and help with the manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huang, J., Ellis, C., Hauge, B., Qi, Y., Varagona, M. (2015). Herbicide Tolerance. In: Azhakanandam, K., Silverstone, A., Daniell, H., Davey, M. (eds) Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2202-4_6

Download citation

Publish with us

Policies and ethics