Skip to main content

Biological Cancer Therapies and the Kidney

  • Chapter
  • First Online:
Onconephrology

Abstract

Targeted therapies now cover a range of new signaling cascades. Because these drugs are both specific and highly potent, toxicities are now a well-recognized consequence of these therapies. Typically, these toxicities result from inhibition of the biologic pathway in a non-cancer tissue, where the pathway regulates some aspect of organ homeostasis. Kidney toxicities are often cumulative, and high dose or prolonged therapy increases the risk of renal dysfunction. Whereas acute kidney injury generally improves when diagnosed early, there is a very real risk of permanent chronic kidney disease (CKD) due to chemotherapy. Nephrologists need to be aware of the presentation, prevention, and treatment of toxicities associated with targeted therapies. This chapter will review the kidney toxicities of antiangiogenic therapies, of epidermal growth factor receptor (EGFR) inhibitors, and of other multi-targeted tyrosine kinase inhibitors (TKI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABPM:

Ambulatory blood pressure monitor

AKI:

Acute kidney injury

CKD:

Chronic kidney disease

CML:

Chronic myelogenous leukemia

EC:

Endothelial cells

EGFR:

Epidermal growth factor receptor

eNOS:

Endothelial nitric oxide synthase

ET:

Endothelin

GFR:

Glomerular filtration rate

GIST:

Gastrointestinal stromal tumor

NO:

Nitric oxide

TKI:

Tyrosine kinase inhibitors

TMA:

Thrombotic microangiopathy

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  2. Perazella MA. Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin J Am Soc Nephrol. 2012;7:1713–21.

    Article  CAS  PubMed  Google Scholar 

  3. Sahni V, Choudhury D, Ahmed Z. Chemotherapy-associated renal dysfunction. Nat Rev Nephrol. 2009;5:450–62.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3:391–400.

    Article  CAS  PubMed  Google Scholar 

  5. Gotink KJ, Verheul HM. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis. 2010;13:1–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49:186–93.

    Article  CAS  PubMed  Google Scholar 

  7. Wu S, Chen JJ, Kudelka A, Lu J, Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9:117–23.

    Article  CAS  PubMed  Google Scholar 

  8. Robinson E, Matulonis UA, Ivy P, Berlin ST, Tyburski K, Penson RT, Humphreys BD. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor inhibitor. Clin J Am Soc Nephrol. 2010;5:477–83. (Epub ahead of print)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Maitland ML, Kasza KE, Karrison T, Moshier K, Sit L, Black HR, Undevia SD, Stadler WM, Elliott WJ, Ratain MJ. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res. 2009;15:6250–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Patel TV, Morgan JA, Demetri GD, George S, Maki RG, Quigley M, Humphreys BD. A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J Natl Cancer Inst. 2008;100:282–4.

    Article  CAS  PubMed  Google Scholar 

  11. Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol. 1998;274:H1054–8.

    CAS  PubMed  Google Scholar 

  12. Robinson ES, Khankin EV, Choueiri TK, Dhawan MS, Rogers MJ, Karumanchi SA, Humphreys BD. Suppression of the nitric oxide pathway in metastatic renal cell carcinoma patients receiving vascular endothelial growth factor-signaling inhibitors. Hypertension. 2010;56:1131–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mayer EL, Dallabrida SM, Rupnick MA, Redline WM, Hannagan K, Ismail NS, Burstein HJ, Beckman JA. Contrary effects of the receptor tyrosine kinase inhibitor vandetanib on constitutive and flow-stimulated nitric oxide elaboration in humans. Hypertension. 2011;58:85–92.

    Article  CAS  PubMed  Google Scholar 

  14. Facemire CS, Nixon AB, Griffiths R, Hurwitz H, Coffman TM. Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension. 2009;54:652–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kappers MH, de Beer VJ, Zhou Z, Danser AH, Sleijfer S, Duncker DJ, van den Meiracker AH, Merkus D. Sunitinib-induced systemic vasoconstriction in swine is endothelin mediated and does not involve nitric oxide or oxidative stress. Hypertension. 2012;59:151–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kappers MH, van Esch JH, Sluiter W, Sleijfer S, Danser AH, van den Meiracker AH. Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension. 2010;56:675–81.

    Article  CAS  PubMed  Google Scholar 

  17. de Jesus-Gonzalez N, Robinson ES, Penchev RR, von Mehren M, Heinrich MC, Tap W, Demetri GD, George S, Humphreys BD. Regorafenib induces rapid and reversible changes in plasma nitric oxide and endothelin-1. Am J Hypertens. 2012;25:1118–23. (in press)

    Article  PubMed  Google Scholar 

  18. Kappers MH, Smedts FM, Horn T, van Esch JH, Sleijfer S, Leijten F, Wesseling S, Strevens H, Jan Danser AH, van den Meiracker AH. The vascular endothelial growth factor receptor inhibitor sunitinib causes a preeclampsia-like syndrome with activation of the endothelin system. Hypertension. 2011;58:295–302.

    Article  CAS  PubMed  Google Scholar 

  19. Bohm F, Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res. 2007;76:8–18.

    Article  PubMed  Google Scholar 

  20. Baffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu-Lowe D, McDonald DM. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol. 2006;290:H547–59.

    Article  CAS  PubMed  Google Scholar 

  21. Mourad JJ, des Guetz G, Debbabi H, Levy BI. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2008;19:927–34.

    Article  Google Scholar 

  22. Steeghs N, Gelderblom H, Roodt JO, Christensen O, Rajagopalan P, Hovens M, Putter H, Rabelink TJ, de Koning E. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res. 2008;14:3470–6.

    Article  CAS  PubMed  Google Scholar 

  23. Greene AS, Tonellato PJ, Lui J, Lombard JH, Cowley AW, Jr. Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol. 1989;256:H126–31.

    CAS  PubMed  Google Scholar 

  24. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Muller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschki D, Titze J. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.

    Article  CAS  PubMed  Google Scholar 

  25. Robinson ES, Khankin EV, Karumanchi SA, Humphreys BD. Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol. 2010;30:591–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wu S, Kim C, Baer L, Zhu X. Bevacizumab increases risk for severe proteinuria in cancer patients. J Am Soc Nephrol. 2010;21:1381–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, Gerber HP, Kikkawa Y, Miner JH, Quaggin SE. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111:707–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358:1129–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Eremina V, Quaggin SE. Biology of anti-angiogenic therapy-induced thrombotic microangiopathy. Semin Nephrol. 2010;30:582–90.

    Article  CAS  PubMed  Google Scholar 

  30. Izzedine H, Brocheriou I, Deray G, Rixe O. Thrombotic microangiopathy and anti-VEGF agents. Nephrol Dial Transplant. 2007;22:1481–2.

    Article  PubMed  Google Scholar 

  31. Roncone D, Satoskar A, Nadasdy T, Monk JP, Rovin BH. Proteinuria in a patient receiving anti-VEGF therapy for metastatic renal cell carcinoma. Nat Clin Pract Nephrol. 2007;3:287–93.

    Article  PubMed  Google Scholar 

  32. Frangie C, Lefaucheur C, Medioni J, Jacquot C, Hill GS, Nochy D. Renal thrombotic microangiopathy caused by anti-VEGF-antibody treatment for metastatic renal-cell carcinoma. Lancet Oncol. 2007;8:177–8.

    Article  PubMed  Google Scholar 

  33. Bollee G, Patey N, Cazajous G, Robert C, Goujon JM, Fakhouri F, Bruneval P, Noel LH, Knebelmann B. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant. 2009;24:682–5.

    Article  CAS  PubMed  Google Scholar 

  34. George BA, Zhou XJ, Toto R. Nephrotic syndrome after bevacizumab: case report and literature review. Am J Kidney Dis. 2007;49:e23–9.

    Article  PubMed  Google Scholar 

  35. Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore RF, 3rd, Gaudreault J, Damico LA, Holmgren E, Kabbinavar F. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22:2184–91.

    Article  CAS  PubMed  Google Scholar 

  36. Khurana A. Allergic interstitial nephritis possibly related to sunitinib use. Am J Geriatr Pharmacother. 2007;5:341–4.

    Article  CAS  PubMed  Google Scholar 

  37. Winn SK, Ellis S, Savage P, Sampson S, Marsh JE. Biopsy-proven acute interstitial nephritis associated with the tyrosine kinase inhibitor sunitinib: a class effect? Nephrol Dial Transplant. 2009;24:673–5.

    Article  CAS  PubMed  Google Scholar 

  38. Jhaveri KD, Flombaum CD, Kroog G, Glezerman IG. Nephrotoxicities associated with the use of tyrosine kinase inhibitors: a single-center experience and review of the literature. Nephron Clin Pract. 2011;117:c312–9.

    Article  CAS  PubMed  Google Scholar 

  39. Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Barni S. Risk of anti-EGFR monoclonal antibody-related hypomagnesemia: systematic review and pooled analysis of randomized studies. Expert Opin Drug Saf. 2012;11(Suppl 1):9–19.

    Article  Google Scholar 

  40. Vincenzi B, Galluzzo S, Santini D, Rocci L, Loupakis F, Correale P, Addeo R, Zoccoli A, Napolitano A, Graziano F, Ruzzo A, Falcone A, Francini G, Dicuonzo G, Tonini G. Early magnesium modifications as a surrogate marker of efficacy of cetuximab-based anticancer treatment in KRAS wild-type advanced colorectal cancer patients. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2011;22:1141–6.

    Article  CAS  Google Scholar 

  41. Dimke H, van der Wijst J, Alexander TR, Meijer IM, Mulder GM, van Goor H, Tejpar S, Hoenderop JG, Bindels RJ. Effects of the EGFR inhibitor erlotinib on magnesium handling. J Am Soc Nephrol. 2010;21:1309–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Tejpar S, Piessevaux H, Claes K, Piront P, Hoenderop JG, Verslype C, Van Cutsem E. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol. 2007;8:387–94.

    Article  CAS  PubMed  Google Scholar 

  43. Izzedine H, Bahleda R, Khayat D, Massard C, Magne N, Spano JP, Soria JC. Electrolyte disorders related to EGFR-targeting drugs. Crit Rev Oncol/Hematol. 2010;73:213–9.

    Article  Google Scholar 

  44. Marcolino MS, Boersma E, Clementino NC, Macedo AV, Marx-Neto AD, Silva MH, van Gelder T, Akkerhuis KM, Ribeiro AL. Imatinib treatment duration is related to decreased estimated glomerular filtration rate in chronic myeloid leukemia patients. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2011;22:2073–9.

    Article  CAS  Google Scholar 

  45. Yilmaz M, Kantarjian HM, Quintas-Cardama A, O’Brien S, Burger JA, Ferrajoli A, Borthakur G, Ravandi F, Pierce S, Jabbour E, Cortes JE. Estimated glomerular filtration rate changes in patients (Pts) with chronic myeloid leukemia (CML) treated with tyrosine kinase inhibitors (TKI). American Society of Hematology Annual Meeting. New Orleans, LA, 2013.

    Google Scholar 

  46. Demetri GD, Lo Russo P, MacPherson IR, Wang D, Morgan JA, Brunton VG, Paliwal P, Agrawal S, Voi M, Evans TR. Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin Cancer Res. 2009;15:6232–40.

    Article  CAS  PubMed  Google Scholar 

  47. Wallace E, Lyndon W, Chumley P, Jaimes EA, Fatima H. Dasatinib-induced nephrotic-range proteinuria. Am J Kidney Dis. 2013;61:1026–31.

    Article  CAS  PubMed  Google Scholar 

  48. Ozkurt S, Temiz G, Acikalin MF, Soydan M. Acute renal failure under dasatinib therapy. Ren Fail. 2010;32:147–9.

    Article  CAS  PubMed  Google Scholar 

  49. Holstein SA, Stokes JB, Hohl RJ. Renal failure and recovery associated with second-generation Bcr-Abl kinase inhibitors in imatinib-resistant chronic myelogenous leukemia. Leuk Res. 2009;33:344–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D. Humphreys M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Humphreys, B. (2015). Biological Cancer Therapies and the Kidney. In: Jhaveri, K., Salahudeen, A. (eds) Onconephrology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2659-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2659-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2658-9

  • Online ISBN: 978-1-4939-2659-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics