Skip to main content

Mechanisms of Glucocorticoid-Regulated Gene Transcription

  • Chapter
Glucocorticoid Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 872))

Abstract

One fascinating aspect of glucocorticoid signaling is their broad range of physiological and pharmacological effects. These effects are at least in part a consequence of transcriptional regulation by the glucocorticoid receptor (GR). Activation of GR by glucocorticoids results in tissue-specific changes in gene expression levels with some genes being activated whereas others are repressed. This raises two questions: First, how does GR regulate different subsets of target genes in different tissues? And second, how can GR both activate and repress the expression of genes?

To answer these questions, this chapter will describe the function of the various “components” and how they cooperate to mediate the transcriptional responses to glucocorticoids. The first “component” is GR itself. The second “component” is the chromatin and its role in specifying where in the genome GR binds. Binding to the genome however is just the first step in regulating the expression of genes and transcriptional regulation by GR depends on the recruitment of coregulator proteins that either directly or indirectly influence the recruitment and or activity of RNA polymerase II. Ultimately, the integration of inputs including GR isoform, DNA sequence, chromatin and cooperation with coregulators determines which genes are regulated and the direction of their regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benedek TG. History of the development of corticosteroid therapy. Clin Exp Rheumatol. 2011;29(5 Suppl 68):5–12.

    Google Scholar 

  2. Miesfeld R, Okret S, Wikstrom AC, Wrange O, Gustafsson JA, Yamamoto KR. Characterization of a steroid hormone receptor gene and mRNA in wild-type and mutant cells. Nature. 1984;312(5996):779–81.

    CAS  PubMed  Google Scholar 

  3. Hollenberg SM, Weinberger C, Ong ES, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985;318(6047):635–41.

    CAS  PubMed  Google Scholar 

  4. Carlstedt-Duke J, Stromstedt PE, Wrange O, Bergman T, Gustafsson JA, Jornvall H. Domain structure of the glucocorticoid receptor protein. Proc Natl Acad Sci U S A. 1987;84(13):4437–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Kumar R, Thompson EB. Gene regulation by the glucocorticoid receptor: structure:function relationship. J Steroid Biochem Mol Biol. 2005;94(5):383–94.

    CAS  PubMed  Google Scholar 

  6. Kumar R, Thompson EB. Transactivation functions of the N-terminal domains of nuclear hormone receptors: protein folding and coactivator interactions. Mol Endocrinol. 2003;17(1):1–10.

    CAS  PubMed  Google Scholar 

  7. Kumar R, Thompson EB. Folding of the glucocorticoid receptor N-terminal transactivation function: dynamics and regulation. Mol Cell Endocrinol. 2012;348(2):450–6.

    CAS  PubMed  Google Scholar 

  8. Strahle U, Klock G, Schutz G. A DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proc Natl Acad Sci U S A. 1987;84(22):7871–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991;352(6335):497–505.

    CAS  PubMed  Google Scholar 

  10. Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science. 2009;324(5925):407–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Freedman LP, Luisi BF, Korszun ZR, Basavappa R, Sigler PB, Yamamoto KR. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature. 1988;334(6182):543–6.

    CAS  PubMed  Google Scholar 

  12. Severne Y, Wieland S, Schaffner W, Rusconi S. Metal binding 'finger' structures in the glucocorticoid receptor defined by site-directed mutagenesis. EMBO J. 1988;7(8):2503–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Hill KK, Roemer SC, Jones DN, Churchill ME, Edwards DP. A progesterone receptor co-activator (JDP2) mediates activity through interaction with residues in the carboxyl-terminal extension of the DNA binding domain. J Biol Chem. 2009;284(36):24415–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Boonyaratanakornkit V, Melvin V, Prendergast P, et al. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol. 1998;18(8):4471–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Ichijo T, Chrousos GP, Kino T. Activated glucocorticoid receptor interacts with the INHAT component Set/TAF-Ibeta and releases it from a glucocorticoid-responsive gene promoter, relieving repression: implications for the pathogenesis of glucocorticoid resistance in acute undifferentiated leukemia with Set-Can translocation. Mol Cell Endocrinol. 2008;283(1-2):19–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Ko L, Cardona GR, Henrion-Caude A, Chin WW. Identification and characterization of a tissue-specific coactivator, GT198, that interacts with the DNA-binding domains of nuclear receptors. Mol Cell Biol. 2002;22(1):357–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Tao Y, Williams-Skipp C, Scheinman RI. Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappa B and induction of apoptosis. J Biol Chem. 2001;276(4):2329–32.

    CAS  PubMed  Google Scholar 

  18. Jonat C, Rahmsdorf HJ, Park KK, et al. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell. 1990;62(6):1189–204.

    CAS  PubMed  Google Scholar 

  19. Yang-Yen HF, Chambard JC, Sun YL, et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell. 1990;62(6):1205–15.

    CAS  PubMed  Google Scholar 

  20. Schule R, Rangarajan P, Kliewer S, et al. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell. 1990;62(6):1217–26.

    CAS  PubMed  Google Scholar 

  21. Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1994;91(2):752–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Langlais D, Couture C, Balsalobre A, Drouin J. The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome. Mol Cell. 2012;47(1):38–49.

    CAS  PubMed  Google Scholar 

  23. Heck S, Kullmann M, Gast A, et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 1994;13(17):4087–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Bledsoe RK, Montana VG, Stanley TB, et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell. 2002;110(1):93–105.

    CAS  PubMed  Google Scholar 

  25. Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol. 2013;132(5):1033–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997;18(3):306–60.

    CAS  PubMed  Google Scholar 

  27. Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci U S A. 1996;93(10):4948–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kucera T, Waltner-Law M, Scott DK, Prasad R, Granner DK. A point mutation of the AF2 transactivation domain of the glucocorticoid receptor disrupts its interaction with steroid receptor coactivator 1. J Biol Chem. 2002;277(29):26098–102.

    CAS  PubMed  Google Scholar 

  29. Hall JM, McDonnell DP, Korach KS. Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol Endocrinol. 2002;16(3):469–86.

    CAS  PubMed  Google Scholar 

  30. Thomas-Chollier M, Watson LC, Cooper SB, et al. A naturally occurring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms. Proc Natl Acad Sci U S A. 2013;110(44):17826–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Chandra V, Huang P, Hamuro Y, et al. Structure of the intact PPAR-gamma-RXR-nuclear receptor complex on DNA. Nature. 2008;456(7220):350–6.

    PubMed Central  PubMed  Google Scholar 

  32. Zhang J, Chalmers MJ, Stayrook KR, et al. DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol. 2011;18(5):556–63.

    PubMed Central  PubMed  Google Scholar 

  33. Rogatsky I, Wang JC, Derynck MK, et al. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc Natl Acad Sci U S A. 2003;100(24):13845–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Nehme A, Lobenhofer EK, Stamer WD, Edelman JL. Glucocorticoids with different chemical structures but similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular meshwork cells. BMC Med Genomics. 2009;2:58.

    PubMed Central  PubMed  Google Scholar 

  35. Cao Y, Bender IK, Konstantinidis AK, et al. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans. Blood. 2013;121(9):1553–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Kino T, Su YA, Chrousos GP. Human glucocorticoid receptor isoform beta: recent understanding of its potential implications in physiology and pathophysiology. Cell Mol Life Sci. 2009;66(21):3435–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Lewis-Tuffin LJ, Cidlowski JA. The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Ann N Y Acad Sci. 2006;1069:1–9.

    CAS  PubMed  Google Scholar 

  38. Rivers C, Levy A, Hancock J, Lightman S, Norman M. Insertion of an amino acid in the DNA-binding domain of the glucocorticoid receptor as a result of alternative splicing. J Clin Endocrinol Metab. 1999;84(11):4283–6.

    CAS  PubMed  Google Scholar 

  39. Haarman EG, Kaspers GJ, Pieters R, Rottier MM, Veerman AJ. Glucocorticoid receptor alpha, beta and gamma expression vs in vitro glucocorticod resistance in childhood leukemia. Leukemia. 2004;18(3):530–7.

    CAS  PubMed  Google Scholar 

  40. Ray DW, Davis JR, White A, Clark AJ. Glucocorticoid receptor structure and function in glucocorticoid-resistant small cell lung carcinoma cells. Cancer Res. 1996;56(14):3276–80.

    CAS  PubMed  Google Scholar 

  41. Sanchez-Vega B, Krett N, Rosen ST, Gandhi V. Glucocorticoid receptor transcriptional isoforms and resistance in multiple myeloma cells. Mol Cancer Ther. 2006;5(12):3062–70.

    CAS  PubMed  Google Scholar 

  42. de Lange P, Segeren CM, Koper JW, et al. Expression in hematological malignancies of a glucocorticoid receptor splice variant that augments glucocorticoid receptor-mediated effects in transfected cells. Cancer Res. 2001;61(10):3937–41.

    PubMed  Google Scholar 

  43. Oakley RH, Cidlowski JA. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem. 2011;286(5):3177–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Lu NZ, Cidlowski JA. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell. 2005;18(3):331–42.

    CAS  PubMed  Google Scholar 

  45. Chen W, Dang T, Blind RD, et al. Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol Endocrinol. 2008;22(8):1754–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Charmandari E, Chrousos GP, Lambrou GI, et al. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One. 2011;6(9), e25612.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Nader N, Chrousos GP, Kino T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J. 2009;23(5):1572–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Karin M, Haslinger A, Holtgreve H, et al. Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature. 1984;308(5959):513–9.

    CAS  PubMed  Google Scholar 

  49. Jantzen HM, Strahle U, Gloss B, et al. Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell. 1987;49(1):29–38.

    CAS  PubMed  Google Scholar 

  50. Chandler VL, Maler BA, Yamamoto KR. DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell. 1983;33(2):489–99.

    CAS  PubMed  Google Scholar 

  51. Solomon MJ, Larsen PL, Varshavsky A. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell. 1988;53(6):937–47.

    CAS  PubMed  Google Scholar 

  52. Robertson G, Hirst M, Bainbridge M, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods. 2007;4(8):651–7.

    CAS  PubMed  Google Scholar 

  53. John S, Sabo PJ, Thurman RE, et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet. 2011;43(3):264–8.

    CAS  PubMed  Google Scholar 

  54. Reddy TE, Pauli F, Sprouse RO, et al. Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res. 2009;19(12):2163–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Yu CY, Mayba O, Lee JV, et al. Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One. 2010;5(12), e15188.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Polman JA, Welten JE, Bosch DS, et al. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neurosci. 2012;13:118.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Nielsen R, Pedersen TA, Hagenbeek D, et al. Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 2008;22(21):2953–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Welboren WJ, van Driel MA, Janssen-Megens EM, et al. ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J. 2009;28(10):1418–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Hakim O, John S, Ling JQ, Biddie SC, Hoffman AR, Hager GL. Glucocorticoid receptor activation of the Ciz1-Lcn2 locus by long range interactions. J Biol Chem. 2009;284(10):6048–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Drouin J, Sun YL, Chamberland M, et al. Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J. 1993;12(1):145–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Surjit M, Ganti KP, Mukherji A, et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell. 2011;145(2):224–41.

    CAS  PubMed  Google Scholar 

  62. Hudson WH, Youn C, Ortlund EA. The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol. 2013;20(1):53–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Zhang Z, Jones S, Hagood JS, Fuentes NL, Fuller GM. STAT3 acts as a co-activator of glucocorticoid receptor signaling. J Biol Chem. 1997;272(49):30607–10.

    CAS  PubMed  Google Scholar 

  64. Philips A, Maira M, Mullick A, et al. Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol Cell Biol. 1997;17(10):5952–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Luecke HF, Yamamoto KR. The glucocorticoid receptor blocks P-TEFb recruitment by NFkappaB to effect promoter-specific transcriptional repression. Genes Dev. 2005;19(9):1116–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Bladh LG, Liden J, Dahlman-Wright K, Reimers M, Nilsson S, Okret S. Identification of endogenous glucocorticoid repressed genes differentially regulated by a glucocorticoid receptor mutant able to separate between nuclear factor-kappaB and activator protein-1 repression. Mol Pharmacol. 2005;67(3):815–26.

    CAS  PubMed  Google Scholar 

  67. Rao NA, McCalman MT, Moulos P, et al. Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res. 2011;21(9):1404–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Rogatsky I, Zarember KA, Yamamoto KR. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J. 2001;20(21):6071–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Rogatsky I, Waase CL, Garabedian MJ. Phosphorylation and inhibition of rat glucocorticoid receptor transcriptional activation by glycogen synthase kinase-3 (GSK-3). Species-specific differences between human and rat glucocorticoid receptor signaling as revealed through GSK-3 phosphorylation. J Biol Chem. 1998;273(23):14315–21.

    CAS  PubMed  Google Scholar 

  70. Aittomaki S, Pesu M, Groner B, Janne OA, Palvimo JJ, Silvennoinen O. Cooperation among Stat1, glucocorticoid receptor, and PU.1 in transcriptional activation of the high-affinity Fc gamma receptor I in monocytes. J Immunol. 2000;164(11):5689–97.

    CAS  PubMed  Google Scholar 

  71. Cella N, Groner B, Hynes NE. Characterization of Stat5a and Stat5b homodimers and heterodimers and their association with the glucocortiocoid receptor in mammary cells. Mol Cell Biol. 1998;18(4):1783–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Siersbaek R, Nielsen R, John S, et al. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J. 2011;30(8):1459–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Thurman RE, Rynes E, Humbert R, et al. The accessible chromatin landscape of the human genome. Nature. 2012;489(7414):75–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Wang J, Zhuang J, Iyer S, et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 2012;22(9):1798–812.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Strahle U, Schmid W, Schutz G. Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J. 1988;7(11):3389–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Lerner L, Henriksen MA, Zhang X, Darnell Jr JE. STAT3-dependent enhanceosome assembly and disassembly: synergy with GR for full transcriptional increase of the alpha 2-macroglobulin gene. Genes Dev. 2003;17(20):2564–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. De Martino MU, Alesci S, Chrousos GP, Kino T. Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism. Ann N Y Acad Sci. 2004;1024:72–85.

    PubMed  Google Scholar 

  78. Biddie SC, John S, Sabo PJ, et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell. 2011;43(1):145–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Stromstedt PE, Poellinger L, Gustafsson JA, Carlstedt-Duke J. The glucocorticoid receptor binds to a sequence overlapping the TATA box of the human osteocalcin promoter: a potential mechanism for negative regulation. Mol Cell Biol. 1991;11(6):3379–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Subramaniam N, Cairns W, Okret S. Glucocorticoids repress transcription from a negative glucocorticoid response element recognized by two homeodomain-containing proteins, Pbx and Oct-1. J Biol Chem. 1998;273(36):23567–74.

    CAS  PubMed  Google Scholar 

  81. Ki SH, Cho IJ, Choi DW, Kim SG. Glucocorticoid receptor (GR)-associated SMRT binding to C/EBPbeta TAD and Nrf2 Neh4/5: role of SMRT recruited to GR in GSTA2 gene repression. Mol Cell Biol. 2005;25(10):4150–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990;249(4974):1266–72.

    CAS  PubMed  Google Scholar 

  83. Belikov S, Astrand C, Wrange O. FoxA1 binding directs chromatin structure and the functional response of a glucocorticoid receptor-regulated promoter. Mol Cell Biol. 2009;29(20):5413–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 2002;9(2):279–89.

    CAS  PubMed  Google Scholar 

  85. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011;43(1):27–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Sahu B, Laakso M, Ovaska K, et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 2011;30(19):3962–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Gertz J, Savic D, Varley KE, et al. Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol Cell. 2013;52(1):25–36.

    CAS  PubMed  Google Scholar 

  88. Grontved L, John S, Baek S, et al. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J. 2013;32(11):1568–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. John S, Sabo PJ, Johnson TA, et al. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol Cell. 2008;29(5):611–24.

    CAS  PubMed  Google Scholar 

  90. Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol Cell. 2009;36(4):541–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Murasawa S, Matsubara H, Kizima K, Maruyama K, Mori Y, Inada M. Glucocorticoids regulate V1a vasopressin receptor expression by increasing mRNA stability in vascular smooth muscle cells. Hypertension. 1995;26(4):665–9.

    CAS  PubMed  Google Scholar 

  92. Lasa M, Brook M, Saklatvala J, Clark AR. Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol. 2001;21(3):771–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Ing NH. Steroid hormones regulate gene expression posttranscriptionally by altering the stabilities of messenger RNAs. Biol Reprod. 2005;72(6):1290–6.

    CAS  PubMed  Google Scholar 

  94. Beermann F, Schmid E, Ganss R, Schutz G, Ruppert S. Molecular characterization of the mouse tyrosinase gene: pigment cell-specific expression in transgenic mice. Pigment Cell Res. 1992;5(5 Pt 2):295–9.

    CAS  PubMed  Google Scholar 

  95. Ratman D, Vanden Berghe W, Dejager L, et al. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol. 2013;380(1–2):41–54.

    CAS  PubMed  Google Scholar 

  96. Ford J, McEwan IJ, Wright AP, Gustafsson JA. Involvement of the transcription factor IID protein complex in gene activation by the N-terminal transactivation domain of the glucocorticoid receptor in vitro. Mol Endocrinol. 1997;11(10):1467–75.

    CAS  PubMed  Google Scholar 

  97. Shiama N. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 1997;7(6):230–6.

    CAS  PubMed  Google Scholar 

  98. Fryer CJ, Archer TK. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature. 1998;393(6680):88–91.

    CAS  PubMed  Google Scholar 

  99. Almlof T, Wallberg AE, Gustafsson JA, Wright AP. Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor tau 1-core activation domain and target factors. Biochemistry. 1998;37(26):9586–94.

    CAS  PubMed  Google Scholar 

  100. Hittelman AB, Burakov D, Iniguez-Lluhi JA, Freedman LP, Garabedian MJ. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J. 1999;18(19):5380–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Chen W, Roeder RG. The Mediator subunit MED1/TRAP220 is required for optimal glucocorticoid receptor-mediated transcription activation. Nucleic Acids Res. 2007;35(18):6161–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Pascual-Le Tallec L, Simone F, Viengchareun S, Meduri G, Thirman MJ, Lombes M. The elongation factor ELL (eleven-nineteen lysine-rich leukemia) is a selective coregulator for steroid receptor functions. Mol Endocrinol. 2005;19(5):1158–69.

    CAS  PubMed  Google Scholar 

  103. Conaway JW, Shilatifard A, Dvir A, Conaway RC. Control of elongation by RNA polymerase II. Trends Biochem Sci. 2000;25(8):375–80.

    CAS  PubMed  Google Scholar 

  104. Gupte R, Muse GW, Chinenov Y, Adelman K, Rogatsky I. Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle. Proc Natl Acad Sci U S A. 2013;110(36):14616–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Germond JE, Hirt B, Oudet P, Gross-Bellark M, Chambon P. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A. 1975;72(5):1843–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science. 1974;184(4139):868–71.

    CAS  PubMed  Google Scholar 

  107. Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423(6936):145–50.

    CAS  PubMed  Google Scholar 

  108. Workman JL, Roeder RG. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell. 1987;51(4):613–22.

    CAS  PubMed  Google Scholar 

  109. Hager GL, Archer TK, Fragoso G, et al. Influence of chromatin structure on the binding of transcription factors to DNA. Cold Spring Harb Symp Quant Biol. 1993;58:63–71.

    CAS  PubMed  Google Scholar 

  110. King HA, Trotter KW, Archer TK. Chromatin remodeling during glucocorticoid receptor regulated transactivation. Biochim Biophys Acta. 2012;1819(7):716–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Yoshinaga SK, Peterson CL, Herskowitz I, Yamamoto KR. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science. 1992;258(5088):1598–604.

    CAS  PubMed  Google Scholar 

  112. Hsiao PW, Fryer CJ, Trotter KW, Wang W, Archer TK. BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol Cell Biol. 2003;23(17):6210–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Johnson TA, Elbi C, Parekh BS, Hager GL, John S. Chromatin remodeling complexes interact dynamically with a glucocorticoid receptor-regulated promoter. Mol Biol Cell. 2008;19(8):3308–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Engel KB, Yamamoto KR. The glucocorticoid receptor and the coregulator Brm selectively modulate each other's occupancy and activity in a gene-specific manner. Mol Cell Biol. 2011;31(16):3267–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Nightingale KP, O'Neill LP, Turner BM. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev. 2006;16(2):125–36.

    CAS  PubMed  Google Scholar 

  116. Vermeulen M, Mulder KW, Denissov S, et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell. 2007;131(1):58–69.

    CAS  PubMed  Google Scholar 

  117. Bode J, Henco K, Wingender E. Modulation of the nucleosome structure by histone acetylation. Eur J Biochem. 1980;110(1):143–52.

    CAS  PubMed  Google Scholar 

  118. Glass CK, Rose DW, Rosenfeld MG. Nuclear receptor coactivators. Curr Opin Cell Biol. 1997;9(2):222–32.

    CAS  PubMed  Google Scholar 

  119. Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20(18):6891–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Kovacs JJ, Murphy PJ, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18(5):601–7.

    CAS  PubMed  Google Scholar 

  121. Zelin E, Zhang Y, Toogun OA, Zhong S, Freeman BC. The p23 molecular chaperone and GCN5 acetylase jointly modulate protein-DNA dynamics and open chromatin status. Mol Cell. 2012;48(3):459–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc Natl Acad Sci U S A. 2002;99(26):16701–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Chen D, Huang SM, Stallcup MR. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem. 2000;275(52):40810–6.

    CAS  PubMed  Google Scholar 

  124. Lee DY, Northrop JP, Kuo MH, Stallcup MR. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J Biol Chem. 2006;281(13):8476–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Watson LC, Kuchenbecker KM, Schiller BJ, Gross JD, Pufall MA, Yamamoto KR. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat Struct Mol Biol. 2013;20(7):876–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Wang JC, Shah N, Pantoja C, et al. Novel arylpyrazole compounds selectively modulate glucocorticoid receptor regulatory activity. Genes Dev. 2006;20(6):689–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. De Bosscher K, Vanden Berghe W, Beck IM, et al. A fully dissociated compound of plant origin for inflammatory gene repression. Proc Natl Acad Sci U S A. 2005;102(44):15827–32.

    PubMed Central  PubMed  Google Scholar 

  128. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013;10(10):957–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Campbell JM, Hartjes KA, Nelson TJ, Xu X, Ekker SC. New and TALENted genome engineering toolbox. Circ Res. 2013;113(5):571–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Jin F, Li Y, Dixon JR, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013;503(7475):290–4.

    CAS  PubMed  Google Scholar 

  133. Li W, Notani D, Ma Q, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 2013;498(7455):516–20.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiaan H. Meijsing Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meijsing, S.H. (2015). Mechanisms of Glucocorticoid-Regulated Gene Transcription. In: Wang, JC., Harris, C. (eds) Glucocorticoid Signaling. Advances in Experimental Medicine and Biology, vol 872. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2895-8_3

Download citation

Publish with us

Policies and ethics