Skip to main content

Chapter 10 Corrosion of Metallic Implants

  • Chapter
  • First Online:
Handbook of Biomaterial Properties
  • 3095 Accesses

Abstract

The surfaces of passive metals are normally attacked at specific points where the oxide film has been destroyed and massive quantities of metal ions are released. Depending on the magnification with which surfaces are observed, various degrees of localized attack can be detected. Sometimes, however, corrosion may not be easily distinguishable from mechanical imperfections associated with manufacturing or handling. Even under the scanning electron microscope (SEM) it is often difficult to distinguish between mechanical indentations and pitting or crevice attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  • O.V. Akgun and O.T. Inal, 'Laser surface modification of Ti-6A1-4V alloy', Journal of Materials Science , 29, 1159-1168 (1994).

    Google Scholar 

  • A. Aladjem, 'Review Anodic oxidation of titanium and its alloys', Journal of Materials Science, 8, 688-704 (1973).

    Google Scholar 

  • M.A. Barbosa, 'Corrosion mechanisms of metallic biomaterials', Biomaterials Degradation-Fundamental Aspects and Related Clinical Phenomena, European Materials Research Society Monographs, Vol. 1 (eds. M.A. Barbosa, F. Burny, J. Cordey, E. Dorre, G. Hastings, D. Muster and P. Tranquilli-Leali), pp. 227-257, Elsevier Science Publishers, Amsterdam (1991 a).

    Google Scholar 

  • M.A. Barbosa, 'Electrochemical impedance studies on calcium phosphate-metal interfaces', Bioceramics, Vol. 4 (eds. W. Bonfield, G.W. Hastings and K.E. Tanner), pp. 326-333, Butterworth-Heinemann (1991 b).

    Google Scholar 

  • M.A. Barbosa, 'Surface layers and the reactivity of metallic implants', High-Tech Biomaterials, European Materials Research Society Monographs, Vol. 3 (eds. D. Muster, M.A. Barbosa, F. Burny, J. Cordey, E. Dorre, G. Hastings, and P. Tranquilli-Leali), pp. 257-283, Elsevier Science Publishers B.V., Amsterdam (1992).

    Google Scholar 

  • J. Black, 'Biological Performance of Tantalum', Clinical Materials, 16, 167-173 (1994)

    Google Scholar 

  • N.C. Blumenthal and V. Cosma, 'Inhibition of apatite formation by titanium and vanadium ions', Journal of Biomedical Materials Research: Applied Biomaterials , 23, 13-22 (1989).

    Google Scholar 

  • M. Browne and P.J. Gregson, 'Surface modification of titanium alloy implants', Biomaterials, 15, 894-898 (1994).

    Google Scholar 

  • S.A. Brown, L.J. Farnsworth, K. Merritt, and T.D. Crowe, ' In vitro and in vivo metal ion release', Journal of Biomedical Materials Research, 22, 321-338 (1988).

    Google Scholar 

  • R.A. Buchanan and I.S. Lee, 'Surface modification of biomaterials through noble metal ion implantation', Journal of Biomedical Materials Research, 24,309-318 (1990).

    Google Scholar 

  • B.W. Callen, B.F. Lowenberg, S. Lugowski, R.N.S. Sodhi, and J.E. Davies, 'Nitric acid passivation of Ti6A14V reduces thickness of surface oxide layer and increases trace element release', Journal of Biomedical Materials Research, 29, 279-290 (1995).

    Google Scholar 

  • S.K. Chawla, S.A. Brown, K. Merritt, and J.H. Payer, 'Serum protein effects on polarization behavior of 316L stainless steel', Corrosion 46, 147-152 (1990).

    Google Scholar 

  • A. Cigada, G. Rondelli, B. Vicentini, M. Giacomazzi, and A. Roos, 'Duplex stainless steels for osteosynthesis devices', Journal of Biomedical Materials Research, 23, 1087-1095 (1989).

    Google Scholar 

  • A. Cigada, M. Cabrini, and P. Pedeferri, 'Increasing of the corrosion resistance of the Ti6A14V alloy by high thickness anodic oxidation', Journal of Materials Science: Materials in Medicine, 3, 408-412 (1992).

    Google Scholar 

  • J.P. Collier, V.A. Surprenant, R.E. Jensen, and M.B. Mayor, 'Corrosion at the interface of cobalt-alloy heads on titanium-alloy stems', Clinical Orthopaedics, 271, 305-312 (1991).

    Google Scholar 

  • S.D. Cook, M.R. Brinker, R.C. Anderson, R.J. Tomlinson and J.C. Butler, 'Performance of retrieved Kuntscher intramedullary rods: improved corrosion resistance with contemporary material design', Clinical Materials, 5, 53-71 (1990).

    Google Scholar 

  • S.D. Cook, R.L. Barrack, G.C. Baffes, A.J.T. Clemow, P. Serekian, N. Dong and M.A. Kester, 'Wear and corrosion of modular interfaces in total hip replacements', Clinical Orthopaedics, 298, 80-88 (1994).

    Google Scholar 

  • S.D. Cook, R.L. Barrack, A.J.T. Clemow, 'Corrosion and wear at the modular interface of uncemented femoral stems', The Journal of Bone and Joint Surgery [Br], 76-B, 68-72 (1994).

    Google Scholar 

  • L.D. Dorr, R. Bloebaum, J. Emmanual and R. Meldrum, 'Histologic, biochemical, and ion analysis of tissue and fluids retrieved during total hip arthroplasty', Clinical Orthopaedics and Related Research, nr. 261, 82-95 (1990).

    Google Scholar 

  • P. Ducheyne and K.E. Healy, 'The effect of plasma-sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt chromium alloys', Journal of Biomedical Materials Research, 22, 1137-1163 (1988).

    Google Scholar 

  • M.L. Escudero and J.L. Gonzalez-Carrasco, In vitro corrosion behaviour of MA956 superalloy Biomaterials , 15, 1175-1180 (1994).

    Google Scholar 

  • P. Frayssinet, F. Tourenne, N. Rouquet, G. Bonel, and P. Conte, Biological effects of aluminium diffusion from plasma-sprayed alumina coatings, Journal of Materials Science: Materials in Medicine, 5, 491-494 (1994).

    Google Scholar 

  • J.L. Gilbert, S.M. Smith and E.P. Lautenschlager, Scanning electrochemical microscopy of metallic biomaterials: reaction rate and ion release imaging modes, Journal of Biomedical Materials Research, 27, 1357-1366 (1993a).

    Google Scholar 

  • J.L. Gilbert, C.A. Buckley, and J.J. Jacobs, In vivo corrosion of modular hip pros thesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling, Journal of Biomedical Materials Research, 27, 1533-1544 (1993b).

    Google Scholar 

  • J. Gluszek and J. Masalski, Galvanic coupling of 316L steel with titanium, niobium, and tantalum in Ringer's solution, British Corrosion Journal, 27, 135-138 (1992).

    Google Scholar 

  • K. Hayashi, I. Noda, K. Uenoyama, and Y. Sugioka, Breakdown corrosion potential of ceramic coated metal implants, Journal of Biomedical Materials Research, 24, 1111-1113 (1990).

    Google Scholar 

  • R. Hazan, R. Brener and U. Oron, Bone growth to metal implants is regulated by their surface chemical properties, Biomaterials, 14, 570-574 (1993).

    Google Scholar 

  • K.E. Healy and P. Ducheyne, The mechanisms of passive dissolution of titanium in a model physiological environment, Journal of Biomedical Materials Research, 26, 319-338 (1992).

    Google Scholar 

  • K.E. Healy, and P. Ducheyne, Passive dissolution kinetics of titanium in vitro, Journal of Materials Science. Materials in Medicine, 4, 117-126 (1993).

    Google Scholar 

  • P.J. Hughes, S.A. Brown, J.H. Payer, and K. Merritt, The effect of heat treatments and bead size on the corrosion of porous F75 in saline and serum, Journal of Biomedical Materials Research, 24, 79-94 (1990).

    Google Scholar 

  • C.B. Johansson, J. Lausmaa, T. Rostlund, and P. Thomsen, Commercially pure titanium and Ti6Al4V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortical bone, Journal of Materials Science: Materials in Medicine , 4, 132-141 (1993).

    Google Scholar 

  • J. Karrholm, W. Frech, K.-G. Nilsson and F. Snorrason, Increased metal release from cemented femoral components made of titanium alloy, Acta Orthop. Scand., 65, 599-604 (1994).

    Google Scholar 

  • B. Kasemo and J. Lausmaa, Material-tissue Interfaces: the role of surface properties and processes, Environmental Health Perspectives, 102, 41-45 (1994).

    Google Scholar 

  • J.C. Keller, C.M. Stanford, J.P. Wightman, R.A. Draughn and R. Zaharias, Characterizations of titanium implant surfaces. III, Journal of Biomedical Materials Research, 28, 939-946 (1994).

    Google Scholar 

  • D.V. Kilpadi and J.E. Lemons, Surface energy characterization of unalloyed titanium implants,Journal of Biomedical Materials Research , 28, 1419-1425 (1994).

    Google Scholar 

  • F.J. Kummer, J.L. Ricci, and N.C. Blumenthal, RF plasma treatment of metallic implant surfaces, Journal of Applied Biomaterials, 3, 39-44 (1992).

    Google Scholar 

  • C. Larsson, P. Thomsen, J. Lausmaa, M. Rodahl, B. Kasemo and L.E. Ericson, Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thickness and morphology, Biomaterials, 15, 1062-1074 (1994).

    Google Scholar 

  • J. Lausmaa and B. Kasemo, Surface spectroscopic characterization of titanium implant materials, Applied Surface Science, 44, 133-146 (1990).

    Google Scholar 

  • G. Lewis, X-ray photoelectron spectroscopy study of surface layers on orthopaedic alloys. II. Co-Cr-Mo (ASTM F-75) alloy, Journal of Vacuum Science Technology A, 11, 168-174 (1993a).

    Google Scholar 

  • G. Lewis and K. Daigle, Electrochemical behavior of Ti-6Al-4V alloy in static biosimulating solutions, Journal of Applied Biomaterials, 4, 47-54 (1993b).

    Google Scholar 

  • B.F. Lowenberg, S. Lugowski, M. Chipman, and J.E. Davies, ASTM-F86 passivation increases trace element release from Ti6Al4V into culture medium, Journal of Materials Science: Materials in Medicine, 5, 467-472 (1994).

    Google Scholar 

  • S. Lugowski, D.C. Smith, and J.C. VanLoon, Critical aspects of trace element analysis of tissue samples: a review, Clinical Materials, 6, 91-104 (1990).

    Google Scholar 

  • R.D. Meldrum, R.D. Bloebaum, and L.D. Dorr, Metal ion concentrations in retrieved polyethylene total hip inserts and implications for artifactually high readings in tissue, Journal of Biomedical Materials Research, 27, 1349-1355 (1993).

    Google Scholar 

  • K. Merritt, R.W. Margevicius, and S.A. Brown, Storage and elimination of titanium, aluminium, and vanadium salts, in vivo, Journal of Biomedical Materials Research, 26, 1503-1515 (1992).

    Google Scholar 

  • Y. Okamoto and S. Hidaka, Studies on calcium phosphate precipitation: effects of metal ions used in dental materials, Journal of Biomedicla Materials Research, 28, 1403-1410 (1994).

    Google Scholar 

  • Y. Okazaki, A. Ito, T. Tateishi, and Y. Ito, Effect of alloying elements on anodic polarization properties of titanium alloys in acid solution, Materials Transactions, JIM, 35, 58-66 (1994).

    Google Scholar 

  • J.L. Ong, L.C. Lucas, G.N. Raikar, and J.C. Gregory, Electrochemical corrosion analyses and characterization of surface-modified titanium , Applied Surface Science, 72, 7-13 (1993).

    Google Scholar 

  • Y. Oshida, R. Sachdeva, and S. Miyazaki, Changes in contact angles as a function of time on some pre-oxidized biomaterials, Journal of Materials Science: Materials in Medicine, 3, 306-312 (1992).

    Google Scholar 

  • Y. Oshida, R. Sachdeva, S. Miyazaki, and J. Daly, Effects of shot-peening on surface contact angles of biomaterials, Journal of Materials Science: Materials in Medicine, 4, 443-447 (1993).

    Google Scholar 

  • J. Pan, D. Thierry, and C. Leygraf, Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide, Journal of Biomedical Materials Research, 28, 113-122 (1994).

    Google Scholar 

  • O.E.M. Pohler, Degradation of metallic orthopaedic implants, in Biomaterials in reconstructive surgery (ed. L.R. Rubin), Chap. 15, The CV Mosby Co., 1983, pp. 158-228.

    Google Scholar 

  • M. Pourbaix, Atlas of electrochemcial equilibria, NACE/CEBELCOR, 1974.

    Google Scholar 

  • A. Pourbaix, M. Marek and R.F. Hochman, Comportement electrochimique du titane à bas pH et bas potential d’électrode. Rapports Techniques CEBELCOR, 118, RT 197, (1971).

    Google Scholar 

  • L.M. Rabbe, J. Rieu, A. Lopez and P. Combrade, Fretting deterioration of orthopaedic implant materials: search for solutions, Clinical Materials, 15, 221-226 (1994).

    Google Scholar 

  • J .-P. Randin, Corrosion behavior of nickel-containing alloys in artificial sweat, Journal of Biomedical Materials Research, 22, 649-666 (1988).

    Google Scholar 

  • G. Ravnholt and J. Jensen, Corrosion investigation of two materials for implant supraconstructions coupled to a titanium implant, Scandinavian Journal of Dental Research, 99, 181-186 (1991).

    Google Scholar 

  • C.C. Ribeiro, M.A. Barbosa, A.A.S.C. Machado, A. Tudor, and M.C. Davies, Modifications in the molecular structure of hydroxyapatite induced by titanium ions, Journal of Materials Science: Materials in Medicine, 6, 829-834 (1995).

    Google Scholar 

  • C. Sella, J.C. Martin, J. Lecoeur, J.P. Bellier, M.F. Harmand, A. Nadji, J.P. Davidas, and A. Le Chanu, Corrosion protection of metal implants by hard biocompatible ceramic coatings deposited by radio-frequency sputtering, Clinical Materials, 5, 297-307 (1990).

    Google Scholar 

  • M.F. Semlitsch, H. Weber, R. Streicher and R. Schon, Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy, Biomaterials, 13, 781-788 (1992).

    Google Scholar 

  • S.R. Sousa and M.A. Barbosa, Electrochemistry of AISI 316L stainless steel in calcium phosphate and protein solutions, Journal of Materials Science: Materials in Medicine, 2, 19-26 (1991).

    Google Scholar 

  • S.R. Sousa and M.A. Barbosa, Corrosion resistance of titanium cp in saline physiological solutions with calcium phosphate and proteins, Clinical Materials, 14, 287-294 (1993).

    Google Scholar 

  • S.J. Stohs and D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biology and Medicine, 18, 321-336 (1995).

    Google Scholar 

  • D.S. Sutherland, P.O. Forshaw, G.C. Allen, I.T. Brown and K.R. Williams, Surface analysis of titanium implants, Biomaterials, 14, 893-899 (1993).

    Google Scholar 

  • P. Tengvall, L. Lundstrom, L. Sjokvist, H. Elwing, and L.M. Bjurstein, Titanium hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants, Biomaterials , 10, 166-175 (1989).

    Google Scholar 

  • P. Tengvall and I. Lundstrom, Physico-chemical considerations of titanium as a biomaterial, Clinical Materials, 9, 115-134 (1992).

    Google Scholar 

  • K.A. Thomas, S.D. Cook, A.F. Harding, and R.J. Haddad Jr., Tissue reaction to implant. corrosion in 38 internal fixation devices, Orthopedics, 11, 441-451 (1988).

    Google Scholar 

  • H. Tomás, A.P. Freire, and L.M. Abrantes, Cast Co-Cr alloy and pure chromium in proteinaceous media: an electrochemical characterization, Journal of Materials Science: Materials in Medicine, 5, 446-451 (1994).

    Google Scholar 

  • S. Torgersen and N.R. Gjerdet, Retrieval study of stainless steel and titanium mini plates and screws used in maxillofacial surgery, Journal of Materials Science: Materials in Medicine , 5, 256-262 (1994).

    Google Scholar 

  • D.L. Tsalev and Z.K. Zaprianov, Atomic absorption spectrometry in occupational and environmental health practice, Vol. I, CRC Press, Boca Raton, 1983.

    Google Scholar 

  • J.A. von Fraunhofer, N. Berberich, and D. Seligson, Antibiotic-metal interactions in saline medium, Biomaterials, 10, 136-138 (1989).

    Google Scholar 

  • J.C. Wataha, C.T. Hanks, and R.G. Craig, Uptake of metal cations by fibroblasts in vitro, Journal of Biomedical Materials Research, 27, 227-232 (1993).

    Google Scholar 

  • A. Wisbey, P.J. Gregson, and M. Tuke Application of PVD TiN coating to Co Cr-Mo based surgical implants, Biomaterials, 8, 477-480 (1987).

    Google Scholar 

  • R.L. Williams, S.A. Brown, and K. Merritt, Electrochemical studies on the influence of proteins on the corrosion of implant alloys, Biomaterials , 9, 181-186 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barbosa, M.A. (2016). Chapter 10 Corrosion of Metallic Implants. In: Murphy, W., Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3305-1_26

Download citation

Publish with us

Policies and ethics