Skip to main content

Phage Integrases for Genome Editing

  • Chapter
  • First Online:
Genome Editing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB))

Abstract

Phage integrases are prokaryotic site-specific recombinases that perform precise cut-and-paste recombination between their short attB and attP recognition sequences. These enzymes work in cellular environments ranging from bacteria to mammalian cells and have become useful genome engineering tools. PhiC31 was the first phage integrase to be developed for use in mammalian cells. This integrase has the useful property of being able to recombine its own attB and attP sites. In addition, phiC31 integrase performs recombination at related native sequences called pseudo att sites present in large genomes, which has allowed integration into unmodified genomes. PhiC31 integrase can also be used in conjunction with another phage integrase, Bxb1, which has different recognition sequences and does not recombine at pseudo att sites. The properties of these phage integrases have led to a range of applications, summarized here, from creation of transgenic organisms and in vivo gene therapy, to cellular reprogramming and precise genome editing by cassette exchange. The latest system, dual integrase cassette exchange (DICE), uses target phiC31 and Bxb1 attP sequences precisely placed in genomes by homologous recombination and is especially useful for iterative genome engineering in pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thorpe HM, Smith MCM. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A. 1998;95:5505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Groth AC, Olivares EC, Thyagarajan B, Calos MP. A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A. 2000;97:5995–6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rutherford K, Van Duyne G. The ins and outs of serine integrase site-specific recombination. Curr Opin Struct Biol. 2014;24:125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. 2001;21:3926–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chalberg TC, et al. Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. 2006;357:28–48.

    Article  CAS  PubMed  Google Scholar 

  6. Allen BG, Weeks DL. Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods. 2005;2:975–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Groth AC, Fish M, Nusse R, Calos MP. Creation of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. 2004;166:1775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Geisinger J, Calos MP. Site-specific recombination using phiC31 integrase. In: Renault S, Duchateau P, editors. Site-directed insertion of transgenes. Dordrecht: Springer Science; 2013. p. 211–39.

    Chapter  Google Scholar 

  9. Olivares EC, et al. Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat Biotechnol. 2002;20:1124–8.

    Article  CAS  PubMed  Google Scholar 

  10. Chavez C, et al. Kinetics and longevity of phiC31 integrase in mouse liver and cultured cells. Hum Gene Ther. 2010;21:1287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keravala A, et al. Long-term phenotypic correction in factor IX knockout mice by using phiC31 integrase-mediated gene therapy. Gene Ther. 2011;18:842–8.

    Article  CAS  PubMed  Google Scholar 

  12. Chavez C, et al. Long-term expression of human coagulation factor VIII in a tolerant mouse model using the phiC31 integrase system. Hum Gene Ther. 2012;23:390–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chavez C, Calos M. Therapeutic applications of the phiC31 integrase system. Curr Gene Ther. 2011;11:375–81.

    Article  CAS  PubMed  Google Scholar 

  14. Karow M, Calos M. The therapeutic potential of phiC31 integrase as a gene therapy system. Expert Opin Biol Ther. 2011;11:1287–96.

    Article  CAS  PubMed  Google Scholar 

  15. Chalberg TC, Genise HL, Vollrath D, Calos MP. PhiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. 2005;46:2140–6.

    Article  PubMed  Google Scholar 

  16. Bertoni C, et al. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci U S A. 2006;103:419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  19. Karow M, et al. Site-specific recombinase strategy to create induced pluripotent stem cells efficiently with plasmid DNA. Stem Cells. 2011;29:1696–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao C, et al. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells. PLoS One. 2014;9(4), e96279.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Keravala A, et al. A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. 2006;276:135–46.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu F, et al. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res. 2014;42(5), e34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thorpe HM, Wilson SE, Smith MCM. Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol. 2000;38:232–41.

    Article  CAS  PubMed  Google Scholar 

  24. Khaleel T, Younger E, McEwan A, Varghese A, Smith M. A phage protein that binds phiC31 integrase to switch its directionality. Mol Microbiol. 2011;80:1450–63.

    Article  CAS  PubMed  Google Scholar 

  25. Farruggio A, Chavez C, Mikell C, Calos M. Efficient reversal of phiC31 integrase recombination in mammalian cells. Biotechnol J. 2012;7(11):1332–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.P.C. thanks Victoria Ellis for creating the figures and the California Institute for Regenerative Medicine for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele P. Calos Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Calos, M.P. (2016). Phage Integrases for Genome Editing. In: Cathomen, T., Hirsch, M., Porteus, M. (eds) Genome Editing. Advances in Experimental Medicine and Biology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3509-3_5

Download citation

Publish with us

Policies and ethics