Skip to main content

Adiabatic Quantum Computing on Molecular Spin Quantum Computers

  • Chapter
  • First Online:
Electron Spin Resonance (ESR) Based Quantum Computing

Abstract

A molecular spin quantum computer (MSQC) is a model of QCs, in which we manipulate bus electron spins with client nuclear spins by pulse-based electron spin/magnetic resonance (ESR/MR) techniques applied to well-defined open-shell molecular entities. The spin manipulation executes quantum computation ranging over all Hilbert space, which is achieved by sets of quantum gate operations, called universal gates. The bus electron spin quantum bits (qubits) interact extensively with other electron spins and relatively localized nuclear spins as client qubits. Since the electron spins play the central role in MSQCs, MSQCs can simply be regarded as ESR-QCs. Generally compared with NMR-QC, ESR-QCs have advantages in fast gate operations, global control in client qubits, and initialization process. On the other hand, apparent disadvantages are fast decoherence and technical difficulties in current spin manipulation technology.

In this chapter, we introduce the implementation of an adiabatic quantum computation from the theoretical point of view. The main issue is quantum operations in realistic Adiabatic Quantum Computers (AQCs) based on molecular spin systems, suggesting that the established experimental schemes and protocols render MSQCs realistic. For this purpose, an algorithm is selected for an adiabatic factorization problem of 21, as we compare with the comparable algorithm of NMR experiments with three nuclear qubits. Toward adiabatic quantum computation on MSQCs, two molecular spin systems are selected: One is a molecular spin composed of three exchange/dipole-coupled electrons as electron-only spin qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized particularly in terms of quantum mechanical behavior as interpreted by their spin Hamiltonians. The implementation of AQC has been achieved by establishing ESR/MR pulse sequences applied to the spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR-QC experiments and standard QCs. A significant result is that MSQCs can perform adiabatic quantum computations efficiently as same as standard QCs, and the computations can be performed in ESR timescale even if the client nuclear spin qubits participate in the computation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Keyes, Rep. Prog. Phys. 68, 2701–2746 (2005)

    Article  Google Scholar 

  2. S. Lloyd, Nature 406, 1047–1054 (2000)

    Article  Google Scholar 

  3. M. Galbiati, S. Tatay, C. Barraud, A.V. Dediu, F. Petroff, R. Mattana, P. Seneor, MRS. Bull. 39, 602–607 (2014)

    Article  Google Scholar 

  4. E. Coronado, A.J. Epstein, eds. Molecular spintronics and quantum computing. J. Mater. Chem., 2009, 19, 1661–1768.

    Google Scholar 

  5. S.D. Jiang, K. Goss, C. Cervetti, L. Bogani, Sci. China Chem. 55, 867–882 (2012)

    Article  Google Scholar 

  6. Y. Li, H.J. Yang, Chem. Lett. 39, 796–802 (2010)

    Article  Google Scholar 

  7. C.T. Rodgers, Pure Appl. Chem. 81, 19–43 (2009)

    Article  Google Scholar 

  8. Z.G. Zhou, L.X. Liu, Curr. Org. Chem. 18, 459–474 (2014)

    Article  Google Scholar 

  9. I. Ratera, J. Veciana, Chem. Soc. Rev. 41, 303–349 (2012)

    Article  Google Scholar 

  10. A.V. Golovin, D.A. Ponomarev, V.V. Takhistov, J. Theor. Comput. Chem. 9, 125–153 (2010)

    Article  Google Scholar 

  11. C. Bennett, E. Bernstein, G. Brassard, U. Vazirani, J. SIAM Comput. 26, 1510–1523 (1997)

    Article  MathSciNet  Google Scholar 

  12. S. Aaronson, ACM SIGACT News 36, 30–52 (2005)

    Article  Google Scholar 

  13. R.P. Feynman, Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  14. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  15. Y. Wang, Statist. Sci. 27, 373 (2012)

    Article  MathSciNet  Google Scholar 

  16. D. Bacon, W. van Dam, Commun. Acm. 53, 84–93 (2010)

    Article  Google Scholar 

  17. P.W. Shor, J. SIAM, Sci. Statist. Comput. 26, 1484–1509 (1997)

    Google Scholar 

  18. A. Gepp, P. Stocks, Genet. Program. Evol. M 10, 181–228 (2009)

    Article  Google Scholar 

  19. C.-Y. Lu, D.E. Browne, T. Yang, J.-W. Pan, Phys. Rev. Lett. 99, 250504 (2007)

    Article  Google Scholar 

  20. B.P. Lanyon, T.J. Weinhold, N.K. Langford, M. Barbieri, D.F.V. James, A. Gilchrist, A.G. White, Phys. Rev. Lett. 99, 250505 (2007)

    Article  Google Scholar 

  21. A. Politi, J.C.F. Matthews, J.L. O’Brien, Science 325, 1221 (2009)

    Article  MathSciNet  Google Scholar 

  22. E.L.A. Martine-Lopez, T. Lawson, X.Q. Zhou, J.L. O’Brien, Nature Photon. 6, 773–776 (2012)

    Article  Google Scholar 

  23. E. Lucero, Nat. Phys. 8, 719–723 (2012)

    Article  Google Scholar 

  24. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chung, Nature 414, 883–887 (2001)

    Article  Google Scholar 

  25. X.-H. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, J. Du, Phys. Rev. Lett. 101, 220405 (2008)

    Article  Google Scholar 

  26. E. Farhi, J. Goldstone, S. Gutman, M. Sipser, arXiv:quant-ph/0001106

    Google Scholar 

  27. M. Mehring, J. Mende, Phys. Rev. A 73, 052303 (2006)

    Article  Google Scholar 

  28. G.A. Timco, S. Carretta, F. Troiani, F. Tuna, R.J. Pritchard, C.A. Muryn, E.J.L. McInnes, A. Ghirri, A. Candini, P. Santini, G. Amoretti, M. Affronte, R.E.P. Winpenny, Nat. Nanotechnol. 4, 173–178 (2009)

    Article  Google Scholar 

  29. K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Höfer, T. Takui, J. Mater. Chem. 19, 3739–3754 (2009)

    Article  Google Scholar 

  30. S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. Mori, R. Rahimi, K. Sato, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, H. Hara, P. Carl, P. Höfer, T. Takui, Angew. Chem. Int. Ed. 51, 9860–9864 (2012)

    Article  Google Scholar 

  31. Y. Morita, Y. Yakiyama, S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, K. Sato, M. Kitagawa, K. Nakasuji, T.J. Takui, Am. Chem. Soc. 132, 6944–6946 (2010)

    Article  Google Scholar 

  32. H. Atsumi, K. Maekawa, S. Nakazawa, D. Shiomi, K. Sato, M. Kitagawa, T. Takui, K. Nakatani, Chem. Eur. J. 18, 178–183 (2012)

    Article  Google Scholar 

  33. H. Atsumi, S. Nakazawa, C. Dohno, K. Sato, T. Takui, K. Nakatani, Chem. Commun. 49, 6370–6372 (2013)

    Article  Google Scholar 

  34. J. Roland, N. Cerf, J. Phys. Rev. A 65, 042308 (2002)

    Article  Google Scholar 

  35. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev, SIAM J. Comput. 37, 166–194 (2007)

    Article  MathSciNet  Google Scholar 

  36. S.P. Jordan, E. Farhi, P.W. Shor, Phys. Rev. A. 74, 052322 (2006)

    Article  MathSciNet  Google Scholar 

  37. T. Yoshino, S. Nishida, K. Sato, S. Nakazawa, R.D. Rahimi, K. Toyota, D. Shiomi, Y. Morita, M. Kitagawa, T. Takui, J. Phys. Chem. Lett. 2, 449–453 (2011)

    Article  Google Scholar 

  38. M. Mehring, J. Mende, W. Scherer, Phys. Rev. Lett. 90, 153001 (2003)

    Article  Google Scholar 

  39. M.M. Maricq, Phys. Rev. B 25, 6622 (1982)

    Article  Google Scholar 

  40. A. Llor, Chem. Phys. Lett. 204, 217 (1993)

    Article  Google Scholar 

  41. M. Mehring, V.A. Weberruss, (eds.), Object-Oriented Magnetic Resonance; Classes and Objects, Calculations and Computations (Academic Press, San Diego, 2001)

    Google Scholar 

  42. P.P. Borbat, J.H. Freed, Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences Structure and Bonding, vol. 152 (Springer, Berlin, 2013), pp. 1–82

    Google Scholar 

  43. M.Y. Volkov, K.M. Salikhov, Appl. Magn. Reson. 41, 145–154 (2011)

    Article  Google Scholar 

  44. C.H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T.F. Havel, D.G. Cory, Phys. Rev. A 61, 012302 (1993)

    Article  Google Scholar 

  45. A.G.M. Barrett, G.R. Hanson, A.J.P. White, D.J. Williams, A.S. Micallef, Tetrahedron 63, 5244–5250 (2007)

    Article  Google Scholar 

  46. H.R. Falle, M.A. Whitehea, Can. J. Chem. 50, 139–151 (1972)

    Article  Google Scholar 

  47. L. Thomas, T.J. Srikrishan, Chem. Crystallogr. 33, 689–693 (2003)

    Article  Google Scholar 

  48. C. Heller, T.J. Cole, Chem. Phys. 37, 243–250 (1962)

    Google Scholar 

  49. Y. Atalay, D. Avci, A.J. Basoglu, Mol. Struct. 787, 90–95 (2006)

    Article  Google Scholar 

  50. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, GAUSSIAN 03 (Revision D.01) (Gaussian, Inc., Wallingford, CT, 2004)

    Google Scholar 

  51. M. Shoji, K. Koizumi, Y. Kitagawa, T. Kawakami, S. Yamanaka, M. Okumura, K. Yamaguchi, Chem. Phys. Lett. 432, 343–347 (2006)

    Article  Google Scholar 

  52. K. Yamaguchi, Chem. Phys. Lett. 33, 330–335 (1975)

    Article  Google Scholar 

  53. M. Shoji, K. Koizumi, T. Hamamoto, T. Taniguchi, R. Takeda, Y. Kitagawa, T. Kawakami, M. Okumura, S. Yamanaka, K. Yamaguchi, Polyhedron 24, 2708–2715 (2005)

    Article  Google Scholar 

  54. K. Ayabe, K. Sato, S. Nishida, T. Ise, S. Nakazawa, K. Sugisaki, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, T. Takui, Phys. Chem. Chem. Phys. 14, 9137–9148 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Grants-in-Aid for Scientific Research on Innovative Areas “Quantum Cybernetics” and Scientific Research (B) from MEXT, Japan. The support for the present work by the FIRST project on “Quantum Information Processing” from JSPS, Japan and by the AOARD project on “Quantum Properties of Molecular Nanomagnets” (Award No. FA2386-13-1-4030) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takui Takeji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Yamamoto, S. et al. (2016). Adiabatic Quantum Computing on Molecular Spin Quantum Computers. In: Takui, T., Berliner, L., Hanson, G. (eds) Electron Spin Resonance (ESR) Based Quantum Computing. Biological Magnetic Resonance, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3658-8_4

Download citation

Publish with us

Policies and ethics